\(\int \frac {x}{(a x+b x^3+c x^5)^2} \, dx\) [41]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 18, antiderivative size = 122 \[ \int \frac {x}{\left (a x+b x^3+c x^5\right )^2} \, dx=\frac {b^2-2 a c+b c x^2}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {b \left (b^2-6 a c\right ) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 a^2 \left (b^2-4 a c\right )^{3/2}}+\frac {\log (x)}{a^2}-\frac {\log \left (a+b x^2+c x^4\right )}{4 a^2} \] Output:

1/2*(b*c*x^2-2*a*c+b^2)/a/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/2*b*(-6*a*c+b^2)* 
arctanh((2*c*x^2+b)/(-4*a*c+b^2)^(1/2))/a^2/(-4*a*c+b^2)^(3/2)+ln(x)/a^2-1 
/4*ln(c*x^4+b*x^2+a)/a^2
 

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.70 \[ \int \frac {x}{\left (a x+b x^3+c x^5\right )^2} \, dx=\frac {\frac {2 a \left (b^2-2 a c+b c x^2\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+4 \log (x)-\frac {\left (b^3-6 a b c+b^2 \sqrt {b^2-4 a c}-4 a c \sqrt {b^2-4 a c}\right ) \log \left (b-\sqrt {b^2-4 a c}+2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac {\left (b^3-6 a b c-b^2 \sqrt {b^2-4 a c}+4 a c \sqrt {b^2-4 a c}\right ) \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}}{4 a^2} \] Input:

Integrate[x/(a*x + b*x^3 + c*x^5)^2,x]
 

Output:

((2*a*(b^2 - 2*a*c + b*c*x^2))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + 4*Log 
[x] - ((b^3 - 6*a*b*c + b^2*Sqrt[b^2 - 4*a*c] - 4*a*c*Sqrt[b^2 - 4*a*c])*L 
og[b - Sqrt[b^2 - 4*a*c] + 2*c*x^2])/(b^2 - 4*a*c)^(3/2) + ((b^3 - 6*a*b*c 
 - b^2*Sqrt[b^2 - 4*a*c] + 4*a*c*Sqrt[b^2 - 4*a*c])*Log[b + Sqrt[b^2 - 4*a 
*c] + 2*c*x^2])/(b^2 - 4*a*c)^(3/2))/(4*a^2)
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.25, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {9, 1434, 1165, 25, 1200, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{\left (a x+b x^3+c x^5\right )^2} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {1}{x \left (a+b x^2+c x^4\right )^2}dx\)

\(\Big \downarrow \) 1434

\(\displaystyle \frac {1}{2} \int \frac {1}{x^2 \left (c x^4+b x^2+a\right )^2}dx^2\)

\(\Big \downarrow \) 1165

\(\displaystyle \frac {1}{2} \left (\frac {-2 a c+b^2+b c x^2}{a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\int -\frac {b^2+c x^2 b-4 a c}{x^2 \left (c x^4+b x^2+a\right )}dx^2}{a \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {b^2+c x^2 b-4 a c}{x^2 \left (c x^4+b x^2+a\right )}dx^2}{a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c x^2}{a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 1200

\(\displaystyle \frac {1}{2} \left (\frac {\int \left (\frac {b^2-4 a c}{a x^2}+\frac {-c \left (b^2-4 a c\right ) x^2-b \left (b^2-5 a c\right )}{a \left (c x^4+b x^2+a\right )}\right )dx^2}{a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c x^2}{a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} \left (\frac {\frac {b \left (b^2-6 a c\right ) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{a \sqrt {b^2-4 a c}}+\frac {\log \left (x^2\right ) \left (b^2-4 a c\right )}{a}-\frac {\left (b^2-4 a c\right ) \log \left (a+b x^2+c x^4\right )}{2 a}}{a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c x^2}{a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

Input:

Int[x/(a*x + b*x^3 + c*x^5)^2,x]
 

Output:

((b^2 - 2*a*c + b*c*x^2)/(a*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + ((b*(b^2 
- 6*a*c)*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(a*Sqrt[b^2 - 4*a*c]) + 
 ((b^2 - 4*a*c)*Log[x^2])/a - ((b^2 - 4*a*c)*Log[a + b*x^2 + c*x^4])/(2*a) 
)/(a*(b^2 - 4*a*c)))/2
 

Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 1165
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(d + e*x)^(m + 1)*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e) 
*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^ 
2))), x] + Simp[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))   Int[(d 
+ e*x)^m*Simp[b*c*d*e*(2*p - m + 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p 
+ 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x, x]*(a + 
 b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && LtQ[p, -1] 
 && IntQuadraticQ[a, b, c, d, e, m, p, x]
 

rule 1200
Int[(((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.))/((a_.) + (b_.)* 
(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*((f + g* 
x)^n/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && In 
tegersQ[n]
 

rule 1434
Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp 
[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x + c*x^2)^p, x], x, x^2], x] /; Free 
Q[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [A] (verified)

Time = 0.14 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.52

method result size
default \(-\frac {\frac {\frac {a b c \,x^{2}}{4 a c -b^{2}}-\frac {a \left (2 a c -b^{2}\right )}{4 a c -b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\frac {\left (4 a \,c^{2}-c \,b^{2}\right ) \ln \left (c \,x^{4}+b \,x^{2}+a \right )}{2 c}+\frac {2 \left (5 a b c -b^{3}-\frac {\left (4 a \,c^{2}-c \,b^{2}\right ) b}{2 c}\right ) \arctan \left (\frac {2 c \,x^{2}+b}{\sqrt {4 a c -b^{2}}}\right )}{\sqrt {4 a c -b^{2}}}}{4 a c -b^{2}}}{2 a^{2}}+\frac {\ln \left (x \right )}{a^{2}}\) \(185\)
risch \(\frac {-\frac {b c \,x^{2}}{2 a \left (4 a c -b^{2}\right )}+\frac {2 a c -b^{2}}{2 a \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {\ln \left (x \right )}{a^{2}}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (64 a^{5} c^{3}-48 a^{4} b^{2} c^{2}+12 a^{3} b^{4} c -a^{2} b^{6}\right ) \textit {\_Z}^{2}+\left (64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a \,b^{4} c -b^{6}\right ) \textit {\_Z} +16 a \,c^{3}-3 b^{2} c^{2}\right )}{\sum }\textit {\_R} \ln \left (\left (\left (160 a^{5} c^{3}-128 a^{4} b^{2} c^{2}+34 a^{3} b^{4} c -3 a^{2} b^{6}\right ) \textit {\_R}^{2}+\left (80 a^{3} c^{3}-36 a^{2} b^{2} c^{2}+4 a \,b^{4} c \right ) \textit {\_R} +2 b^{2} c^{2}\right ) x^{2}+\left (-16 a^{5} b \,c^{2}+8 c \,b^{3} a^{4}-a^{3} b^{5}\right ) \textit {\_R}^{2}+\left (36 a^{3} b \,c^{2}-17 a^{2} b^{3} c +2 b^{5} a \right ) \textit {\_R} -8 a b \,c^{2}+2 b^{3} c \right )\right )}{2}\) \(327\)

Input:

int(x/(c*x^5+b*x^3+a*x)^2,x,method=_RETURNVERBOSE)
 

Output:

-1/2/a^2*((a*b*c/(4*a*c-b^2)*x^2-a*(2*a*c-b^2)/(4*a*c-b^2))/(c*x^4+b*x^2+a 
)+1/(4*a*c-b^2)*(1/2*(4*a*c^2-b^2*c)/c*ln(c*x^4+b*x^2+a)+2*(5*a*b*c-b^3-1/ 
2*(4*a*c^2-b^2*c)*b/c)/(4*a*c-b^2)^(1/2)*arctan((2*c*x^2+b)/(4*a*c-b^2)^(1 
/2))))+ln(x)/a^2
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 395 vs. \(2 (112) = 224\).

Time = 0.14 (sec) , antiderivative size = 813, normalized size of antiderivative = 6.66 \[ \int \frac {x}{\left (a x+b x^3+c x^5\right )^2} \, dx =\text {Too large to display} \] Input:

integrate(x/(c*x^5+b*x^3+a*x)^2,x, algorithm="fricas")
 

Output:

[1/4*(2*a*b^4 - 12*a^2*b^2*c + 16*a^3*c^2 + 2*(a*b^3*c - 4*a^2*b*c^2)*x^2 
+ ((b^3*c - 6*a*b*c^2)*x^4 + a*b^3 - 6*a^2*b*c + (b^4 - 6*a*b^2*c)*x^2)*sq 
rt(b^2 - 4*a*c)*log((2*c^2*x^4 + 2*b*c*x^2 + b^2 - 2*a*c + (2*c*x^2 + b)*s 
qrt(b^2 - 4*a*c))/(c*x^4 + b*x^2 + a)) - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2 
 + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)*x^4 + (b^5 - 8*a*b^3*c + 16*a^2*b*c^ 
2)*x^2)*log(c*x^4 + b*x^2 + a) + 4*(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2 + (b^ 
4*c - 8*a*b^2*c^2 + 16*a^2*c^3)*x^4 + (b^5 - 8*a*b^3*c + 16*a^2*b*c^2)*x^2 
)*log(x))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2 + (a^2*b^4*c - 8*a^3*b^2*c^2 
 + 16*a^4*c^3)*x^4 + (a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*x^2), 1/4*(2*a 
*b^4 - 12*a^2*b^2*c + 16*a^3*c^2 + 2*(a*b^3*c - 4*a^2*b*c^2)*x^2 + 2*((b^3 
*c - 6*a*b*c^2)*x^4 + a*b^3 - 6*a^2*b*c + (b^4 - 6*a*b^2*c)*x^2)*sqrt(-b^2 
 + 4*a*c)*arctan(-(2*c*x^2 + b)*sqrt(-b^2 + 4*a*c)/(b^2 - 4*a*c)) - (a*b^4 
 - 8*a^2*b^2*c + 16*a^3*c^2 + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)*x^4 + (b^ 
5 - 8*a*b^3*c + 16*a^2*b*c^2)*x^2)*log(c*x^4 + b*x^2 + a) + 4*(a*b^4 - 8*a 
^2*b^2*c + 16*a^3*c^2 + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)*x^4 + (b^5 - 8* 
a*b^3*c + 16*a^2*b*c^2)*x^2)*log(x))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2 + 
 (a^2*b^4*c - 8*a^3*b^2*c^2 + 16*a^4*c^3)*x^4 + (a^2*b^5 - 8*a^3*b^3*c + 1 
6*a^4*b*c^2)*x^2)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x}{\left (a x+b x^3+c x^5\right )^2} \, dx=\text {Timed out} \] Input:

integrate(x/(c*x**5+b*x**3+a*x)**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x}{\left (a x+b x^3+c x^5\right )^2} \, dx=\int { \frac {x}{{\left (c x^{5} + b x^{3} + a x\right )}^{2}} \,d x } \] Input:

integrate(x/(c*x^5+b*x^3+a*x)^2,x, algorithm="maxima")
 

Output:

1/2*(b*c*x^2 + b^2 - 2*a*c)/((a*b^2*c - 4*a^2*c^2)*x^4 + a^2*b^2 - 4*a^3*c 
 + (a*b^3 - 4*a^2*b*c)*x^2) + integrate(-((b^2*c - 4*a*c^2)*x^3 + (b^3 - 5 
*a*b*c)*x)/(c*x^4 + b*x^2 + a), x)/(a^2*b^2 - 4*a^3*c) + log(x)/a^2
 

Giac [A] (verification not implemented)

Time = 0.45 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.36 \[ \int \frac {x}{\left (a x+b x^3+c x^5\right )^2} \, dx=-\frac {{\left (b^{3} - 6 \, a b c\right )} \arctan \left (\frac {2 \, c x^{2} + b}{\sqrt {-b^{2} + 4 \, a c}}\right )}{2 \, {\left (a^{2} b^{2} - 4 \, a^{3} c\right )} \sqrt {-b^{2} + 4 \, a c}} + \frac {b^{2} c x^{4} - 4 \, a c^{2} x^{4} + b^{3} x^{2} - 2 \, a b c x^{2} + 3 \, a b^{2} - 8 \, a^{2} c}{4 \, {\left (c x^{4} + b x^{2} + a\right )} {\left (a^{2} b^{2} - 4 \, a^{3} c\right )}} - \frac {\log \left (c x^{4} + b x^{2} + a\right )}{4 \, a^{2}} + \frac {\log \left (x^{2}\right )}{2 \, a^{2}} \] Input:

integrate(x/(c*x^5+b*x^3+a*x)^2,x, algorithm="giac")
 

Output:

-1/2*(b^3 - 6*a*b*c)*arctan((2*c*x^2 + b)/sqrt(-b^2 + 4*a*c))/((a^2*b^2 - 
4*a^3*c)*sqrt(-b^2 + 4*a*c)) + 1/4*(b^2*c*x^4 - 4*a*c^2*x^4 + b^3*x^2 - 2* 
a*b*c*x^2 + 3*a*b^2 - 8*a^2*c)/((c*x^4 + b*x^2 + a)*(a^2*b^2 - 4*a^3*c)) - 
 1/4*log(c*x^4 + b*x^2 + a)/a^2 + 1/2*log(x^2)/a^2
 

Mupad [B] (verification not implemented)

Time = 14.71 (sec) , antiderivative size = 5048, normalized size of antiderivative = 41.38 \[ \int \frac {x}{\left (a x+b x^3+c x^5\right )^2} \, dx=\text {Too large to display} \] Input:

int(x/(a*x + b*x^3 + c*x^5)^2,x)
 

Output:

log(x)/a^2 + ((2*a*c - b^2)/(2*a*(4*a*c - b^2)) - (b*c*x^2)/(2*a*(4*a*c - 
b^2)))/(a + b*x^2 + c*x^4) - (log(a + b*x^2 + c*x^4)*(2*b^6 - 128*a^3*c^3 
+ 96*a^2*b^2*c^2 - 24*a*b^4*c))/(2*(4*a^2*b^6 - 256*a^5*c^3 - 48*a^3*b^4*c 
 + 192*a^4*b^2*c^2)) + (b*atan((x^2*((((((b*((320*a^5*b*c^6 - 2*a^2*b^7*c^ 
3 + 36*a^3*b^5*c^4 - 192*a^4*b^3*c^5)/(a^3*b^6 - 64*a^6*c^3 - 12*a^4*b^4*c 
 + 48*a^5*b^2*c^2) - ((2*b^6 - 128*a^3*c^3 + 96*a^2*b^2*c^2 - 24*a*b^4*c)* 
(2560*a^7*b*c^6 + 12*a^3*b^9*c^2 - 184*a^4*b^7*c^3 + 1056*a^5*b^5*c^4 - 26 
88*a^6*b^3*c^5))/(2*(a^3*b^6 - 64*a^6*c^3 - 12*a^4*b^4*c + 48*a^5*b^2*c^2) 
*(4*a^2*b^6 - 256*a^5*c^3 - 48*a^3*b^4*c + 192*a^4*b^2*c^2)))*(6*a*c - b^2 
))/(4*a^2*(4*a*c - b^2)^(3/2)) - (b*(6*a*c - b^2)*(2*b^6 - 128*a^3*c^3 + 9 
6*a^2*b^2*c^2 - 24*a*b^4*c)*(2560*a^7*b*c^6 + 12*a^3*b^9*c^2 - 184*a^4*b^7 
*c^3 + 1056*a^5*b^5*c^4 - 2688*a^6*b^3*c^5))/(8*a^2*(4*a*c - b^2)^(3/2)*(a 
^3*b^6 - 64*a^6*c^3 - 12*a^4*b^4*c + 48*a^5*b^2*c^2)*(4*a^2*b^6 - 256*a^5* 
c^3 - 48*a^3*b^4*c + 192*a^4*b^2*c^2)))*(2*b^6 - 128*a^3*c^3 + 96*a^2*b^2* 
c^2 - 24*a*b^4*c))/(2*(4*a^2*b^6 - 256*a^5*c^3 - 48*a^3*b^4*c + 192*a^4*b^ 
2*c^2)) + (b*((6*a*b^5*c^4 + 80*a^3*b*c^6 - 44*a^2*b^3*c^5)/(a^3*b^6 - 64* 
a^6*c^3 - 12*a^4*b^4*c + 48*a^5*b^2*c^2) + (((320*a^5*b*c^6 - 2*a^2*b^7*c^ 
3 + 36*a^3*b^5*c^4 - 192*a^4*b^3*c^5)/(a^3*b^6 - 64*a^6*c^3 - 12*a^4*b^4*c 
 + 48*a^5*b^2*c^2) - ((2*b^6 - 128*a^3*c^3 + 96*a^2*b^2*c^2 - 24*a*b^4*c)* 
(2560*a^7*b*c^6 + 12*a^3*b^9*c^2 - 184*a^4*b^7*c^3 + 1056*a^5*b^5*c^4 -...
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 1533, normalized size of antiderivative = 12.57 \[ \int \frac {x}{\left (a x+b x^3+c x^5\right )^2} \, dx =\text {Too large to display} \] Input:

int(x/(c*x^5+b*x^3+a*x)^2,x)
 

Output:

(12*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*s 
qrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**2*b*c - 
 2*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sq 
rt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b**3 + 12 
*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sqrt 
(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b**2*c*x**2 
 + 12*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2 
*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b*c**2 
*x**4 - 2*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sq 
rt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b**4 
*x**2 - 2*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sq 
rt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b**3 
*c*x**4 + 12*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan( 
(sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a 
**2*b*c - 2*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan(( 
sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a* 
b**3 + 12*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sq 
rt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b* 
*2*c*x**2 + 12*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*ata 
n((sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + ...