\(\int \frac {1}{x (a x+b x^3+c x^5)^2} \, dx\) [42]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 162 \[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )^2} \, dx=-\frac {b^2-3 a c}{a^2 \left (b^2-4 a c\right ) x^2}+\frac {b^2-2 a c+b c x^2}{2 a \left (b^2-4 a c\right ) x^2 \left (a+b x^2+c x^4\right )}-\frac {\left (b^4-6 a b^2 c+6 a^2 c^2\right ) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{a^3 \left (b^2-4 a c\right )^{3/2}}-\frac {2 b \log (x)}{a^3}+\frac {b \log \left (a+b x^2+c x^4\right )}{2 a^3} \] Output:

-(-3*a*c+b^2)/a^2/(-4*a*c+b^2)/x^2+1/2*(b*c*x^2-2*a*c+b^2)/a/(-4*a*c+b^2)/ 
x^2/(c*x^4+b*x^2+a)-(6*a^2*c^2-6*a*b^2*c+b^4)*arctanh((2*c*x^2+b)/(-4*a*c+ 
b^2)^(1/2))/a^3/(-4*a*c+b^2)^(3/2)-2*b*ln(x)/a^3+1/2*b*ln(c*x^4+b*x^2+a)/a 
^3
 

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.53 \[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )^2} \, dx=\frac {-\frac {a}{x^2}-\frac {a \left (b^3-3 a b c+b^2 c x^2-2 a c^2 x^2\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-4 b \log (x)+\frac {\left (b^4-6 a b^2 c+6 a^2 c^2+b^3 \sqrt {b^2-4 a c}-4 a b c \sqrt {b^2-4 a c}\right ) \log \left (b-\sqrt {b^2-4 a c}+2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac {\left (-b^4+6 a b^2 c-6 a^2 c^2+b^3 \sqrt {b^2-4 a c}-4 a b c \sqrt {b^2-4 a c}\right ) \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}}{2 a^3} \] Input:

Integrate[1/(x*(a*x + b*x^3 + c*x^5)^2),x]
 

Output:

(-(a/x^2) - (a*(b^3 - 3*a*b*c + b^2*c*x^2 - 2*a*c^2*x^2))/((b^2 - 4*a*c)*( 
a + b*x^2 + c*x^4)) - 4*b*Log[x] + ((b^4 - 6*a*b^2*c + 6*a^2*c^2 + b^3*Sqr 
t[b^2 - 4*a*c] - 4*a*b*c*Sqrt[b^2 - 4*a*c])*Log[b - Sqrt[b^2 - 4*a*c] + 2* 
c*x^2])/(b^2 - 4*a*c)^(3/2) + ((-b^4 + 6*a*b^2*c - 6*a^2*c^2 + b^3*Sqrt[b^ 
2 - 4*a*c] - 4*a*b*c*Sqrt[b^2 - 4*a*c])*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^ 
2])/(b^2 - 4*a*c)^(3/2))/(2*a^3)
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.15, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {9, 1434, 1165, 27, 1200, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \left (a x+b x^3+c x^5\right )^2} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {1}{x^3 \left (a+b x^2+c x^4\right )^2}dx\)

\(\Big \downarrow \) 1434

\(\displaystyle \frac {1}{2} \int \frac {1}{x^4 \left (c x^4+b x^2+a\right )^2}dx^2\)

\(\Big \downarrow \) 1165

\(\displaystyle \frac {1}{2} \left (\frac {-2 a c+b^2+b c x^2}{a x^2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\int -\frac {2 \left (b^2+c x^2 b-3 a c\right )}{x^4 \left (c x^4+b x^2+a\right )}dx^2}{a \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {2 \int \frac {b^2+c x^2 b-3 a c}{x^4 \left (c x^4+b x^2+a\right )}dx^2}{a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c x^2}{a x^2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 1200

\(\displaystyle \frac {1}{2} \left (\frac {2 \int \left (\frac {b^2-3 a c}{a x^4}+\frac {b^4-5 a c b^2+c \left (b^2-4 a c\right ) x^2 b+3 a^2 c^2}{a^2 \left (c x^4+b x^2+a\right )}+\frac {4 a b c-b^3}{a^2 x^2}\right )dx^2}{a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c x^2}{a x^2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} \left (\frac {2 \left (-\frac {\left (6 a^2 c^2-6 a b^2 c+b^4\right ) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{a^2 \sqrt {b^2-4 a c}}-\frac {b \log \left (x^2\right ) \left (b^2-4 a c\right )}{a^2}+\frac {b \left (b^2-4 a c\right ) \log \left (a+b x^2+c x^4\right )}{2 a^2}-\frac {b^2-3 a c}{a x^2}\right )}{a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c x^2}{a x^2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

Input:

Int[1/(x*(a*x + b*x^3 + c*x^5)^2),x]
 

Output:

((b^2 - 2*a*c + b*c*x^2)/(a*(b^2 - 4*a*c)*x^2*(a + b*x^2 + c*x^4)) + (2*(- 
((b^2 - 3*a*c)/(a*x^2)) - ((b^4 - 6*a*b^2*c + 6*a^2*c^2)*ArcTanh[(b + 2*c* 
x^2)/Sqrt[b^2 - 4*a*c]])/(a^2*Sqrt[b^2 - 4*a*c]) - (b*(b^2 - 4*a*c)*Log[x^ 
2])/a^2 + (b*(b^2 - 4*a*c)*Log[a + b*x^2 + c*x^4])/(2*a^2)))/(a*(b^2 - 4*a 
*c)))/2
 

Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1165
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(d + e*x)^(m + 1)*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e) 
*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^ 
2))), x] + Simp[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))   Int[(d 
+ e*x)^m*Simp[b*c*d*e*(2*p - m + 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p 
+ 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x, x]*(a + 
 b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && LtQ[p, -1] 
 && IntQuadraticQ[a, b, c, d, e, m, p, x]
 

rule 1200
Int[(((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.))/((a_.) + (b_.)* 
(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*((f + g* 
x)^n/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && In 
tegersQ[n]
 

rule 1434
Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp 
[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x + c*x^2)^p, x], x, x^2], x] /; Free 
Q[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [A] (verified)

Time = 0.15 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.31

method result size
default \(-\frac {\frac {\frac {a c \left (2 a c -b^{2}\right ) x^{2}}{4 a c -b^{2}}+\frac {a b \left (3 a c -b^{2}\right )}{4 a c -b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\frac {\left (-4 a b \,c^{2}+b^{3} c \right ) \ln \left (c \,x^{4}+b \,x^{2}+a \right )}{c}+\frac {4 \left (3 a^{2} c^{2}-5 a \,b^{2} c +b^{4}-\frac {\left (-4 a b \,c^{2}+b^{3} c \right ) b}{2 c}\right ) \arctan \left (\frac {2 c \,x^{2}+b}{\sqrt {4 a c -b^{2}}}\right )}{\sqrt {4 a c -b^{2}}}}{4 a c -b^{2}}}{2 a^{3}}-\frac {1}{2 a^{2} x^{2}}-\frac {2 b \ln \left (x \right )}{a^{3}}\) \(213\)
risch \(\frac {-\frac {c \left (3 a c -b^{2}\right ) x^{4}}{a^{2} \left (4 a c -b^{2}\right )}-\frac {b \left (7 a c -2 b^{2}\right ) x^{2}}{2 \left (4 a c -b^{2}\right ) a^{2}}-\frac {1}{2 a}}{x^{2} \left (c \,x^{4}+b \,x^{2}+a \right )}-\frac {2 b \ln \left (x \right )}{a^{3}}+\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (64 a^{6} c^{3}-48 a^{5} b^{2} c^{2}+12 a^{4} b^{4} c -a^{3} b^{6}\right ) \textit {\_Z}^{2}+\left (-64 a^{3} b \,c^{3}+48 a^{2} b^{3} c^{2}-12 a \,b^{5} c +b^{7}\right ) \textit {\_Z} +9 a \,c^{4}-2 b^{2} c^{3}\right )}{\sum }\textit {\_R} \ln \left (\left (\left (160 a^{7} c^{3}-128 a^{6} b^{2} c^{2}+34 a^{5} b^{4} c -3 a^{4} b^{6}\right ) \textit {\_R}^{2}+\left (-68 a^{4} b \,c^{3}+33 a^{3} b^{3} c^{2}-4 a^{2} b^{5} c \right ) \textit {\_R} +18 a^{2} c^{4}-12 a \,b^{2} c^{3}+2 b^{4} c^{2}\right ) x^{2}+\left (-16 a^{7} b \,c^{2}+8 a^{6} b^{3} c -a^{5} b^{5}\right ) \textit {\_R}^{2}+\left (12 a^{5} c^{3}-39 a^{4} b^{2} c^{2}+17 a^{3} b^{4} c -2 a^{2} b^{6}\right ) \textit {\_R} +24 a^{2} b \,c^{3}-14 a \,b^{3} c^{2}+2 b^{5} c \right )\right )\) \(390\)

Input:

int(1/x/(c*x^5+b*x^3+a*x)^2,x,method=_RETURNVERBOSE)
 

Output:

-1/2/a^3*((a*c*(2*a*c-b^2)/(4*a*c-b^2)*x^2+a*b*(3*a*c-b^2)/(4*a*c-b^2))/(c 
*x^4+b*x^2+a)+2/(4*a*c-b^2)*(1/2*(-4*a*b*c^2+b^3*c)/c*ln(c*x^4+b*x^2+a)+2* 
(3*a^2*c^2-5*a*b^2*c+b^4-1/2*(-4*a*b*c^2+b^3*c)*b/c)/(4*a*c-b^2)^(1/2)*arc 
tan((2*c*x^2+b)/(4*a*c-b^2)^(1/2))))-1/2/a^2/x^2-2*b*ln(x)/a^3
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 492 vs. \(2 (154) = 308\).

Time = 0.21 (sec) , antiderivative size = 1007, normalized size of antiderivative = 6.22 \[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )^2} \, dx =\text {Too large to display} \] Input:

integrate(1/x/(c*x^5+b*x^3+a*x)^2,x, algorithm="fricas")
 

Output:

[-1/2*(a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + 2*(a*b^4*c - 7*a^2*b^2*c^2 + 1 
2*a^3*c^3)*x^4 + (2*a*b^5 - 15*a^2*b^3*c + 28*a^3*b*c^2)*x^2 + ((b^4*c - 6 
*a*b^2*c^2 + 6*a^2*c^3)*x^6 + (b^5 - 6*a*b^3*c + 6*a^2*b*c^2)*x^4 + (a*b^4 
 - 6*a^2*b^2*c + 6*a^3*c^2)*x^2)*sqrt(b^2 - 4*a*c)*log((2*c^2*x^4 + 2*b*c* 
x^2 + b^2 - 2*a*c + (2*c*x^2 + b)*sqrt(b^2 - 4*a*c))/(c*x^4 + b*x^2 + a)) 
- ((b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + (b^6 - 8*a*b^4*c + 16*a^2*b^ 
2*c^2)*x^4 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)*log(c*x^4 + b*x^2 + 
 a) + 4*((b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + (b^6 - 8*a*b^4*c + 16* 
a^2*b^2*c^2)*x^4 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)*log(x))/((a^3 
*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*x^6 + (a^3*b^5 - 8*a^4*b^3*c + 16*a^5 
*b*c^2)*x^4 + (a^4*b^4 - 8*a^5*b^2*c + 16*a^6*c^2)*x^2), -1/2*(a^2*b^4 - 8 
*a^3*b^2*c + 16*a^4*c^2 + 2*(a*b^4*c - 7*a^2*b^2*c^2 + 12*a^3*c^3)*x^4 + ( 
2*a*b^5 - 15*a^2*b^3*c + 28*a^3*b*c^2)*x^2 + 2*((b^4*c - 6*a*b^2*c^2 + 6*a 
^2*c^3)*x^6 + (b^5 - 6*a*b^3*c + 6*a^2*b*c^2)*x^4 + (a*b^4 - 6*a^2*b^2*c + 
 6*a^3*c^2)*x^2)*sqrt(-b^2 + 4*a*c)*arctan(-(2*c*x^2 + b)*sqrt(-b^2 + 4*a* 
c)/(b^2 - 4*a*c)) - ((b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + (b^6 - 8*a 
*b^4*c + 16*a^2*b^2*c^2)*x^4 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)*l 
og(c*x^4 + b*x^2 + a) + 4*((b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + (b^6 
 - 8*a*b^4*c + 16*a^2*b^2*c^2)*x^4 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)* 
x^2)*log(x))/((a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*x^6 + (a^3*b^5 -...
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )^2} \, dx=\text {Timed out} \] Input:

integrate(1/x/(c*x**5+b*x**3+a*x)**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )^2} \, dx=\int { \frac {1}{{\left (c x^{5} + b x^{3} + a x\right )}^{2} x} \,d x } \] Input:

integrate(1/x/(c*x^5+b*x^3+a*x)^2,x, algorithm="maxima")
 

Output:

-1/2*(2*(b^2*c - 3*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (2*b^3 - 7*a*b*c)*x^2)/( 
(a^2*b^2*c - 4*a^3*c^2)*x^6 + (a^2*b^3 - 4*a^3*b*c)*x^4 + (a^3*b^2 - 4*a^4 
*c)*x^2) - 2*integrate(-((b^3*c - 4*a*b*c^2)*x^3 + (b^4 - 5*a*b^2*c + 3*a^ 
2*c^2)*x)/(c*x^4 + b*x^2 + a), x)/(a^3*b^2 - 4*a^4*c) - 2*b*log(x)/a^3
 

Giac [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.12 \[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )^2} \, dx=\frac {{\left (b^{4} - 6 \, a b^{2} c + 6 \, a^{2} c^{2}\right )} \arctan \left (\frac {2 \, c x^{2} + b}{\sqrt {-b^{2} + 4 \, a c}}\right )}{{\left (a^{3} b^{2} - 4 \, a^{4} c\right )} \sqrt {-b^{2} + 4 \, a c}} - \frac {2 \, b^{2} c x^{4} - 6 \, a c^{2} x^{4} + 2 \, b^{3} x^{2} - 7 \, a b c x^{2} + a b^{2} - 4 \, a^{2} c}{2 \, {\left (c x^{6} + b x^{4} + a x^{2}\right )} {\left (a^{2} b^{2} - 4 \, a^{3} c\right )}} + \frac {b \log \left (c x^{4} + b x^{2} + a\right )}{2 \, a^{3}} - \frac {b \log \left (x^{2}\right )}{a^{3}} \] Input:

integrate(1/x/(c*x^5+b*x^3+a*x)^2,x, algorithm="giac")
 

Output:

(b^4 - 6*a*b^2*c + 6*a^2*c^2)*arctan((2*c*x^2 + b)/sqrt(-b^2 + 4*a*c))/((a 
^3*b^2 - 4*a^4*c)*sqrt(-b^2 + 4*a*c)) - 1/2*(2*b^2*c*x^4 - 6*a*c^2*x^4 + 2 
*b^3*x^2 - 7*a*b*c*x^2 + a*b^2 - 4*a^2*c)/((c*x^6 + b*x^4 + a*x^2)*(a^2*b^ 
2 - 4*a^3*c)) + 1/2*b*log(c*x^4 + b*x^2 + a)/a^3 - b*log(x^2)/a^3
 

Mupad [B] (verification not implemented)

Time = 15.33 (sec) , antiderivative size = 5491, normalized size of antiderivative = 33.90 \[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )^2} \, dx=\text {Too large to display} \] Input:

int(1/(x*(a*x + b*x^3 + c*x^5)^2),x)
 

Output:

(log(a + b*x^2 + c*x^4)*(b^7 - 64*a^3*b*c^3 + 48*a^2*b^3*c^2 - 12*a*b^5*c) 
)/(2*(a^3*b^6 - 64*a^6*c^3 - 12*a^4*b^4*c + 48*a^5*b^2*c^2)) - (1/(2*a) - 
(x^2*(2*b^3 - 7*a*b*c))/(2*a^2*(4*a*c - b^2)) + (c*x^4*(3*a*c - b^2))/(a^2 
*(4*a*c - b^2)))/(a*x^2 + b*x^4 + c*x^6) - (2*b*log(x))/a^3 + (atan(((2*a^ 
9*b^6*(4*a*c - b^2)^(9/2) - 128*a^12*c^3*(4*a*c - b^2)^(9/2) - 24*a^10*b^4 
*c*(4*a*c - b^2)^(9/2) + 96*a^11*b^2*c^2*(4*a*c - b^2)^(9/2))*(3*b^6 - 3*a 
^3*c^3 + 36*a^2*b^2*c^2 - 21*a*b^4*c)*((4*(2*b^5*c^4 - 12*a*b^3*c^5 + 18*a 
^2*b*c^6))/(a^6*b^4 + 16*a^8*c^2 - 8*a^7*b^2*c) + (((4*(9*a^5*c^6 - 4*a^2* 
b^6*c^3 + 29*a^3*b^4*c^4 - 54*a^4*b^2*c^5))/(a^6*b^4 + 16*a^8*c^2 - 8*a^7* 
b^2*c) - (((4*(24*a^7*b*c^5 - 2*a^4*b^7*c^2 + 18*a^5*b^5*c^3 - 46*a^6*b^3* 
c^4))/(a^6*b^4 + 16*a^8*c^2 - 8*a^7*b^2*c) - (2*(a^7*b^6*c^2 - 8*a^8*b^4*c 
^3 + 16*a^9*b^2*c^4)*(b^7 - 64*a^3*b*c^3 + 48*a^2*b^3*c^2 - 12*a*b^5*c))/( 
(a^6*b^4 + 16*a^8*c^2 - 8*a^7*b^2*c)*(a^3*b^6 - 64*a^6*c^3 - 12*a^4*b^4*c 
+ 48*a^5*b^2*c^2)))*(b^7 - 64*a^3*b*c^3 + 48*a^2*b^3*c^2 - 12*a*b^5*c))/(2 
*(a^3*b^6 - 64*a^6*c^3 - 12*a^4*b^4*c + 48*a^5*b^2*c^2)))*(b^7 - 64*a^3*b* 
c^3 + 48*a^2*b^3*c^2 - 12*a*b^5*c))/(2*(a^3*b^6 - 64*a^6*c^3 - 12*a^4*b^4* 
c + 48*a^5*b^2*c^2)) + (((((4*(24*a^7*b*c^5 - 2*a^4*b^7*c^2 + 18*a^5*b^5*c 
^3 - 46*a^6*b^3*c^4))/(a^6*b^4 + 16*a^8*c^2 - 8*a^7*b^2*c) - (2*(a^7*b^6*c 
^2 - 8*a^8*b^4*c^3 + 16*a^9*b^2*c^4)*(b^7 - 64*a^3*b*c^3 + 48*a^2*b^3*c^2 
- 12*a*b^5*c))/((a^6*b^4 + 16*a^8*c^2 - 8*a^7*b^2*c)*(a^3*b^6 - 64*a^6*...
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 2043, normalized size of antiderivative = 12.61 \[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )^2} \, dx =\text {Too large to display} \] Input:

int(1/x/(c*x^5+b*x^3+a*x)^2,x)
 

Output:

(12*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*s 
qrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**3*b*c** 
2*x**2 - 12*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan(( 
sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a* 
*2*b**3*c*x**2 + 12*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b 
)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) 
+ b))*a**2*b**2*c**2*x**4 + 12*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)* 
sqrt(a) - b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt( 
c)*sqrt(a) + b))*a**2*b*c**3*x**6 + 2*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*s 
qrt(c)*sqrt(a) - b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt( 
2*sqrt(c)*sqrt(a) + b))*a*b**5*x**2 - 12*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt( 
2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sq 
rt(2*sqrt(c)*sqrt(a) + b))*a*b**4*c*x**4 - 12*sqrt(2*sqrt(c)*sqrt(a) + b)* 
sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)* 
x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b**3*c**2*x**6 + 2*sqrt(2*sqrt(c)*sqrt(a 
) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*s 
qrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b**6*x**4 + 2*sqrt(2*sqrt(c)*sqrt(a 
) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*s 
qrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b**5*c*x**6 + 12*sqrt(2*sqrt(c)*sqr 
t(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b)...