\(\int \frac {1}{(a+c x^4)^2} \, dx\) [182]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 9, antiderivative size = 151 \[ \int \frac {1}{\left (a+c x^4\right )^2} \, dx=\frac {x}{4 a \left (a+c x^4\right )}-\frac {3 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{c}}+\frac {3 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{c}}+\frac {3 \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x}{\sqrt {a}+\sqrt {c} x^2}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{c}} \] Output:

1/4*x/a/(c*x^4+a)+3/16*arctan(-1+2^(1/2)*c^(1/4)*x/a^(1/4))*2^(1/2)/a^(7/4 
)/c^(1/4)+3/16*arctan(1+2^(1/2)*c^(1/4)*x/a^(1/4))*2^(1/2)/a^(7/4)/c^(1/4) 
+3/16*arctanh(2^(1/2)*a^(1/4)*c^(1/4)*x/(a^(1/2)+c^(1/2)*x^2))*2^(1/2)/a^( 
7/4)/c^(1/4)
 

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.21 \[ \int \frac {1}{\left (a+c x^4\right )^2} \, dx=\frac {\frac {8 a^{3/4} x}{a+c x^4}-\frac {6 \sqrt {2} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt [4]{c}}+\frac {6 \sqrt {2} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt [4]{c}}-\frac {3 \sqrt {2} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{\sqrt [4]{c}}+\frac {3 \sqrt {2} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{\sqrt [4]{c}}}{32 a^{7/4}} \] Input:

Integrate[(a + c*x^4)^(-2),x]
 

Output:

((8*a^(3/4)*x)/(a + c*x^4) - (6*Sqrt[2]*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^( 
1/4)])/c^(1/4) + (6*Sqrt[2]*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/c^(1/ 
4) - (3*Sqrt[2]*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/c^ 
(1/4) + (3*Sqrt[2]*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]) 
/c^(1/4))/(32*a^(7/4))
 

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.49, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.000, Rules used = {749, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 749

\(\displaystyle \frac {3 \int \frac {1}{c x^4+a}dx}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {3 \left (\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {a}}+\frac {\int \frac {\sqrt {c} x^2+\sqrt {a}}{c x^4+a}dx}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {3 \left (\frac {\frac {\int \frac {1}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {c}}+\frac {\int \frac {1}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {c}}}{2 \sqrt {a}}+\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {3 \left (\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {a}}+\frac {\frac {\int \frac {1}{-\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )^2-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\int \frac {1}{-\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )^2-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {3 \left (\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {3 \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{\sqrt [4]{c} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}\right )}{\sqrt [4]{c} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {3 \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{\sqrt [4]{c} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}\right )}{\sqrt [4]{c} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt [4]{a} \sqrt {c}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}+\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\)

Input:

Int[(a + c*x^4)^(-2),x]
 

Output:

x/(4*a*(a + c*x^4)) + (3*((-(ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)]/(Sqrt 
[2]*a^(1/4)*c^(1/4))) + ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)]/(Sqrt[2]*a 
^(1/4)*c^(1/4)))/(2*Sqrt[a]) + (-1/2*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4) 
*x + Sqrt[c]*x^2]/(Sqrt[2]*a^(1/4)*c^(1/4)) + Log[Sqrt[a] + Sqrt[2]*a^(1/4 
)*c^(1/4)*x + Sqrt[c]*x^2]/(2*Sqrt[2]*a^(1/4)*c^(1/4)))/(2*Sqrt[a])))/(4*a 
)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 749
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 
 1)/(a*n*(p + 1))), x] + Simp[(n*(p + 1) + 1)/(a*n*(p + 1))   Int[(a + b*x^ 
n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (Inte 
gerQ[2*p] || Denominator[p + 1/n] < Denominator[p])
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.16 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.30

method result size
risch \(\frac {x}{4 a \left (c \,x^{4}+a \right )}+\frac {3 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+a \right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}\right )}{16 c a}\) \(46\)
default \(\frac {x}{4 a \left (c \,x^{4}+a \right )}+\frac {3 \left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a^{2}}\) \(118\)

Input:

int(1/(c*x^4+a)^2,x,method=_RETURNVERBOSE)
 

Output:

1/4*x/a/(c*x^4+a)+3/16/c/a*sum(1/_R^3*ln(x-_R),_R=RootOf(_Z^4*c+a))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.21 \[ \int \frac {1}{\left (a+c x^4\right )^2} \, dx=\frac {3 \, {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{7} c}\right )^{\frac {1}{4}} \log \left (a^{2} \left (-\frac {1}{a^{7} c}\right )^{\frac {1}{4}} + x\right ) - 3 \, {\left (-i \, a c x^{4} - i \, a^{2}\right )} \left (-\frac {1}{a^{7} c}\right )^{\frac {1}{4}} \log \left (i \, a^{2} \left (-\frac {1}{a^{7} c}\right )^{\frac {1}{4}} + x\right ) - 3 \, {\left (i \, a c x^{4} + i \, a^{2}\right )} \left (-\frac {1}{a^{7} c}\right )^{\frac {1}{4}} \log \left (-i \, a^{2} \left (-\frac {1}{a^{7} c}\right )^{\frac {1}{4}} + x\right ) - 3 \, {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{7} c}\right )^{\frac {1}{4}} \log \left (-a^{2} \left (-\frac {1}{a^{7} c}\right )^{\frac {1}{4}} + x\right ) + 4 \, x}{16 \, {\left (a c x^{4} + a^{2}\right )}} \] Input:

integrate(1/(c*x^4+a)^2,x, algorithm="fricas")
 

Output:

1/16*(3*(a*c*x^4 + a^2)*(-1/(a^7*c))^(1/4)*log(a^2*(-1/(a^7*c))^(1/4) + x) 
 - 3*(-I*a*c*x^4 - I*a^2)*(-1/(a^7*c))^(1/4)*log(I*a^2*(-1/(a^7*c))^(1/4) 
+ x) - 3*(I*a*c*x^4 + I*a^2)*(-1/(a^7*c))^(1/4)*log(-I*a^2*(-1/(a^7*c))^(1 
/4) + x) - 3*(a*c*x^4 + a^2)*(-1/(a^7*c))^(1/4)*log(-a^2*(-1/(a^7*c))^(1/4 
) + x) + 4*x)/(a*c*x^4 + a^2)
 

Sympy [A] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.26 \[ \int \frac {1}{\left (a+c x^4\right )^2} \, dx=\frac {x}{4 a^{2} + 4 a c x^{4}} + \operatorname {RootSum} {\left (65536 t^{4} a^{7} c + 81, \left ( t \mapsto t \log {\left (\frac {16 t a^{2}}{3} + x \right )} \right )\right )} \] Input:

integrate(1/(c*x**4+a)**2,x)
 

Output:

x/(4*a**2 + 4*a*c*x**4) + RootSum(65536*_t**4*a**7*c + 81, Lambda(_t, _t*l 
og(16*_t*a**2/3 + x)))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.25 \[ \int \frac {1}{\left (a+c x^4\right )^2} \, dx=\frac {x}{4 \, {\left (a c x^{4} + a^{2}\right )}} + \frac {3 \, {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {c}}} + \frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {c}}} + \frac {\sqrt {2} \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} c^{\frac {1}{4}}} - \frac {\sqrt {2} \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} c^{\frac {1}{4}}}\right )}}{32 \, a} \] Input:

integrate(1/(c*x^4+a)^2,x, algorithm="maxima")
 

Output:

1/4*x/(a*c*x^4 + a^2) + 3/32*(2*sqrt(2)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x + 
sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(sqrt(a)*sqrt(sqrt(a)*sqrt 
(c))) + 2*sqrt(2)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x - sqrt(2)*a^(1/4)*c^(1/4 
))/sqrt(sqrt(a)*sqrt(c)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(c))) + sqrt(2)*log(sq 
rt(c)*x^2 + sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(1/4)) - sqrt( 
2)*log(sqrt(c)*x^2 - sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(1/4) 
))/a
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.28 \[ \int \frac {1}{\left (a+c x^4\right )^2} \, dx=\frac {x}{4 \, {\left (c x^{4} + a\right )} a} + \frac {3 \, \sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{16 \, a^{2} c} + \frac {3 \, \sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{16 \, a^{2} c} + \frac {3 \, \sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{32 \, a^{2} c} - \frac {3 \, \sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{32 \, a^{2} c} \] Input:

integrate(1/(c*x^4+a)^2,x, algorithm="giac")
 

Output:

1/4*x/((c*x^4 + a)*a) + 3/16*sqrt(2)*(a*c^3)^(1/4)*arctan(1/2*sqrt(2)*(2*x 
 + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a^2*c) + 3/16*sqrt(2)*(a*c^3)^(1/4)* 
arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a^2*c) + 3/32 
*sqrt(2)*(a*c^3)^(1/4)*log(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a^2*c 
) - 3/32*sqrt(2)*(a*c^3)^(1/4)*log(x^2 - sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c) 
)/(a^2*c)
 

Mupad [B] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.38 \[ \int \frac {1}{\left (a+c x^4\right )^2} \, dx=\frac {x}{4\,a\,\left (c\,x^4+a\right )}+\frac {3\,\mathrm {atan}\left (\frac {c^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )}{8\,{\left (-a\right )}^{7/4}\,c^{1/4}}+\frac {3\,\mathrm {atanh}\left (\frac {c^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )}{8\,{\left (-a\right )}^{7/4}\,c^{1/4}} \] Input:

int(1/(a + c*x^4)^2,x)
 

Output:

x/(4*a*(a + c*x^4)) + (3*atan((c^(1/4)*x)/(-a)^(1/4)))/(8*(-a)^(7/4)*c^(1/ 
4)) + (3*atanh((c^(1/4)*x)/(-a)^(1/4)))/(8*(-a)^(7/4)*c^(1/4))
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 305, normalized size of antiderivative = 2.02 \[ \int \frac {1}{\left (a+c x^4\right )^2} \, dx=\frac {-6 c^{\frac {3}{4}} a^{\frac {5}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right )-6 c^{\frac {7}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x^{4}+6 c^{\frac {3}{4}} a^{\frac {5}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right )+6 c^{\frac {7}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x^{4}-3 c^{\frac {3}{4}} a^{\frac {5}{4}} \sqrt {2}\, \mathrm {log}\left (-c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right )-3 c^{\frac {7}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (-c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) x^{4}+3 c^{\frac {3}{4}} a^{\frac {5}{4}} \sqrt {2}\, \mathrm {log}\left (c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right )+3 c^{\frac {7}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) x^{4}+8 a c x}{32 a^{2} c \left (c \,x^{4}+a \right )} \] Input:

int(1/(c*x^4+a)^2,x)
 

Output:

( - 6*c**(3/4)*a**(1/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c 
)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a - 6*c**(3/4)*a**(1/4)*sqrt(2)*atan((c* 
*(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*c*x**4 
 + 6*c**(3/4)*a**(1/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(c) 
*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a + 6*c**(3/4)*a**(1/4)*sqrt(2)*atan((c** 
(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*c*x**4 
- 3*c**(3/4)*a**(1/4)*sqrt(2)*log( - c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) 
 + sqrt(c)*x**2)*a - 3*c**(3/4)*a**(1/4)*sqrt(2)*log( - c**(1/4)*a**(1/4)* 
sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*c*x**4 + 3*c**(3/4)*a**(1/4)*sqrt(2)*l 
og(c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a + 3*c**(3/4)*a* 
*(1/4)*sqrt(2)*log(c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*c 
*x**4 + 8*a*c*x)/(32*a**2*c*(a + c*x**4))