\(\int \frac {1}{(d+e x) (a+c x^4)^2} \, dx\) [183]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 703 \[ \int \frac {1}{(d+e x) \left (a+c x^4\right )^2} \, dx=\frac {e^3}{4 \left (c d^4+a e^4\right ) \left (a+c x^4\right )}+\frac {c x \left (d^3-d^2 e x+d e^2 x^2\right )}{4 a \left (c d^4+a e^4\right ) \left (a+c x^4\right )}-\frac {\sqrt {c} d^2 e^5 \arctan \left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{2 \sqrt {a} \left (c d^4+a e^4\right )^2}-\frac {\sqrt {c} d^2 e \arctan \left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{4 a^{3/2} \left (c d^4+a e^4\right )}-\frac {\sqrt [4]{c} d e^4 \left (\sqrt {c} d^2+\sqrt {a} e^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} \left (c d^4+a e^4\right )^2}-\frac {\sqrt [4]{c} d \left (3 \sqrt {c} d^2+\sqrt {a} e^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} \left (c d^4+a e^4\right )}+\frac {\sqrt [4]{c} d e^4 \left (\sqrt {c} d^2+\sqrt {a} e^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} \left (c d^4+a e^4\right )^2}+\frac {\sqrt [4]{c} d \left (3 \sqrt {c} d^2+\sqrt {a} e^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} \left (c d^4+a e^4\right )}+\frac {\sqrt [4]{c} d e^4 \left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x}{\sqrt {a}+\sqrt {c} x^2}\right )}{2 \sqrt {2} a^{3/4} \left (c d^4+a e^4\right )^2}+\frac {\sqrt [4]{c} d \left (3 \sqrt {c} d^2-\sqrt {a} e^2\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x}{\sqrt {a}+\sqrt {c} x^2}\right )}{8 \sqrt {2} a^{7/4} \left (c d^4+a e^4\right )}+\frac {e^7 \log (d+e x)}{\left (c d^4+a e^4\right )^2}-\frac {e^7 \log \left (a+c x^4\right )}{4 \left (c d^4+a e^4\right )^2} \] Output:

1/4*e^3/(a*e^4+c*d^4)/(c*x^4+a)+1/4*c*x*(d*e^2*x^2-d^2*e*x+d^3)/a/(a*e^4+c 
*d^4)/(c*x^4+a)-1/2*c^(1/2)*d^2*e^5*arctan(c^(1/2)*x^2/a^(1/2))/a^(1/2)/(a 
*e^4+c*d^4)^2-1/4*c^(1/2)*d^2*e*arctan(c^(1/2)*x^2/a^(1/2))/a^(3/2)/(a*e^4 
+c*d^4)+1/4*c^(1/4)*d*e^4*(c^(1/2)*d^2+a^(1/2)*e^2)*arctan(-1+2^(1/2)*c^(1 
/4)*x/a^(1/4))*2^(1/2)/a^(3/4)/(a*e^4+c*d^4)^2+1/16*c^(1/4)*d*(3*c^(1/2)*d 
^2+a^(1/2)*e^2)*arctan(-1+2^(1/2)*c^(1/4)*x/a^(1/4))*2^(1/2)/a^(7/4)/(a*e^ 
4+c*d^4)+1/4*c^(1/4)*d*e^4*(c^(1/2)*d^2+a^(1/2)*e^2)*arctan(1+2^(1/2)*c^(1 
/4)*x/a^(1/4))*2^(1/2)/a^(3/4)/(a*e^4+c*d^4)^2+1/16*c^(1/4)*d*(3*c^(1/2)*d 
^2+a^(1/2)*e^2)*arctan(1+2^(1/2)*c^(1/4)*x/a^(1/4))*2^(1/2)/a^(7/4)/(a*e^4 
+c*d^4)+1/4*c^(1/4)*d*e^4*(c^(1/2)*d^2-a^(1/2)*e^2)*arctanh(2^(1/2)*a^(1/4 
)*c^(1/4)*x/(a^(1/2)+c^(1/2)*x^2))*2^(1/2)/a^(3/4)/(a*e^4+c*d^4)^2+1/16*c^ 
(1/4)*d*(3*c^(1/2)*d^2-a^(1/2)*e^2)*arctanh(2^(1/2)*a^(1/4)*c^(1/4)*x/(a^( 
1/2)+c^(1/2)*x^2))*2^(1/2)/a^(7/4)/(a*e^4+c*d^4)+e^7*ln(e*x+d)/(a*e^4+c*d^ 
4)^2-1/4*e^7*ln(c*x^4+a)/(a*e^4+c*d^4)^2
 

Mathematica [A] (verified)

Time = 0.40 (sec) , antiderivative size = 558, normalized size of antiderivative = 0.79 \[ \int \frac {1}{(d+e x) \left (a+c x^4\right )^2} \, dx=\frac {\frac {8 \left (c d^4+a e^4\right ) \left (a e^3+c d x \left (d^2-d e x+e^2 x^2\right )\right )}{a \left (a+c x^4\right )}-\frac {2 \sqrt [4]{c} d \left (3 \sqrt {2} c^{3/2} d^6-4 \sqrt [4]{a} c^{5/4} d^5 e+\sqrt {2} \sqrt {a} c d^4 e^2+7 \sqrt {2} a \sqrt {c} d^2 e^4-12 a^{5/4} \sqrt [4]{c} d e^5+5 \sqrt {2} a^{3/2} e^6\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{a^{7/4}}+\frac {2 \sqrt [4]{c} d \left (3 \sqrt {2} c^{3/2} d^6+4 \sqrt [4]{a} c^{5/4} d^5 e+\sqrt {2} \sqrt {a} c d^4 e^2+7 \sqrt {2} a \sqrt {c} d^2 e^4+12 a^{5/4} \sqrt [4]{c} d e^5+5 \sqrt {2} a^{3/2} e^6\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{a^{7/4}}+32 e^7 \log (d+e x)+\frac {\sqrt {2} \sqrt [4]{c} \left (-3 c^{3/2} d^7+\sqrt {a} c d^5 e^2-7 a \sqrt {c} d^3 e^4+5 a^{3/2} d e^6\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{a^{7/4}}+\frac {\sqrt {2} \sqrt [4]{c} \left (3 c^{3/2} d^7-\sqrt {a} c d^5 e^2+7 a \sqrt {c} d^3 e^4-5 a^{3/2} d e^6\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{a^{7/4}}-8 e^7 \log \left (a+c x^4\right )}{32 \left (c d^4+a e^4\right )^2} \] Input:

Integrate[1/((d + e*x)*(a + c*x^4)^2),x]
 

Output:

((8*(c*d^4 + a*e^4)*(a*e^3 + c*d*x*(d^2 - d*e*x + e^2*x^2)))/(a*(a + c*x^4 
)) - (2*c^(1/4)*d*(3*Sqrt[2]*c^(3/2)*d^6 - 4*a^(1/4)*c^(5/4)*d^5*e + Sqrt[ 
2]*Sqrt[a]*c*d^4*e^2 + 7*Sqrt[2]*a*Sqrt[c]*d^2*e^4 - 12*a^(5/4)*c^(1/4)*d* 
e^5 + 5*Sqrt[2]*a^(3/2)*e^6)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/a^(7 
/4) + (2*c^(1/4)*d*(3*Sqrt[2]*c^(3/2)*d^6 + 4*a^(1/4)*c^(5/4)*d^5*e + Sqrt 
[2]*Sqrt[a]*c*d^4*e^2 + 7*Sqrt[2]*a*Sqrt[c]*d^2*e^4 + 12*a^(5/4)*c^(1/4)*d 
*e^5 + 5*Sqrt[2]*a^(3/2)*e^6)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/a^( 
7/4) + 32*e^7*Log[d + e*x] + (Sqrt[2]*c^(1/4)*(-3*c^(3/2)*d^7 + Sqrt[a]*c* 
d^5*e^2 - 7*a*Sqrt[c]*d^3*e^4 + 5*a^(3/2)*d*e^6)*Log[Sqrt[a] - Sqrt[2]*a^( 
1/4)*c^(1/4)*x + Sqrt[c]*x^2])/a^(7/4) + (Sqrt[2]*c^(1/4)*(3*c^(3/2)*d^7 - 
 Sqrt[a]*c*d^5*e^2 + 7*a*Sqrt[c]*d^3*e^4 - 5*a^(3/2)*d*e^6)*Log[Sqrt[a] + 
Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/a^(7/4) - 8*e^7*Log[a + c*x^4])/ 
(32*(c*d^4 + a*e^4)^2)
 

Rubi [A] (verified)

Time = 1.92 (sec) , antiderivative size = 855, normalized size of antiderivative = 1.22, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {7293, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+c x^4\right )^2 (d+e x)} \, dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (\frac {e^8}{(d+e x) \left (a e^4+c d^4\right )^2}-\frac {c e^4 \left (-d^3+d^2 e x-d e^2 x^2+e^3 x^3\right )}{\left (a+c x^4\right ) \left (a e^4+c d^4\right )^2}+\frac {c \left (d^3-d^2 e x+d e^2 x^2-e^3 x^3\right )}{\left (a+c x^4\right )^2 \left (a e^4+c d^4\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\log (d+e x) e^7}{\left (c d^4+a e^4\right )^2}-\frac {\log \left (c x^4+a\right ) e^7}{4 \left (c d^4+a e^4\right )^2}-\frac {\sqrt {c} d^2 \arctan \left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right ) e^5}{2 \sqrt {a} \left (c d^4+a e^4\right )^2}-\frac {\sqrt [4]{c} d \left (\sqrt {c} d^2+\sqrt {a} e^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right ) e^4}{2 \sqrt {2} a^{3/4} \left (c d^4+a e^4\right )^2}+\frac {\sqrt [4]{c} d \left (\sqrt {c} d^2+\sqrt {a} e^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right ) e^4}{2 \sqrt {2} a^{3/4} \left (c d^4+a e^4\right )^2}-\frac {\sqrt [4]{c} d \left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (\sqrt {c} x^2-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}\right ) e^4}{4 \sqrt {2} a^{3/4} \left (c d^4+a e^4\right )^2}+\frac {\sqrt [4]{c} d \left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (\sqrt {c} x^2+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}\right ) e^4}{4 \sqrt {2} a^{3/4} \left (c d^4+a e^4\right )^2}-\frac {\sqrt {c} d^2 \arctan \left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right ) e}{4 a^{3/2} \left (c d^4+a e^4\right )}+\frac {a e^3+c x \left (d^3-e x d^2+e^2 x^2 d\right )}{4 a \left (c d^4+a e^4\right ) \left (c x^4+a\right )}-\frac {\sqrt [4]{c} d \left (3 \sqrt {c} d^2+\sqrt {a} e^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} \left (c d^4+a e^4\right )}+\frac {\sqrt [4]{c} d \left (3 \sqrt {c} d^2+\sqrt {a} e^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{8 \sqrt {2} a^{7/4} \left (c d^4+a e^4\right )}-\frac {\sqrt [4]{c} d \left (3 \sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (\sqrt {c} x^2-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}\right )}{16 \sqrt {2} a^{7/4} \left (c d^4+a e^4\right )}+\frac {\sqrt [4]{c} d \left (3 \sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (\sqrt {c} x^2+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}\right )}{16 \sqrt {2} a^{7/4} \left (c d^4+a e^4\right )}\)

Input:

Int[1/((d + e*x)*(a + c*x^4)^2),x]
 

Output:

(a*e^3 + c*x*(d^3 - d^2*e*x + d*e^2*x^2))/(4*a*(c*d^4 + a*e^4)*(a + c*x^4) 
) - (Sqrt[c]*d^2*e^5*ArcTan[(Sqrt[c]*x^2)/Sqrt[a]])/(2*Sqrt[a]*(c*d^4 + a* 
e^4)^2) - (Sqrt[c]*d^2*e*ArcTan[(Sqrt[c]*x^2)/Sqrt[a]])/(4*a^(3/2)*(c*d^4 
+ a*e^4)) - (c^(1/4)*d*e^4*(Sqrt[c]*d^2 + Sqrt[a]*e^2)*ArcTan[1 - (Sqrt[2] 
*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*(c*d^4 + a*e^4)^2) - (c^(1/4)*d*( 
3*Sqrt[c]*d^2 + Sqrt[a]*e^2)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(8*S 
qrt[2]*a^(7/4)*(c*d^4 + a*e^4)) + (c^(1/4)*d*e^4*(Sqrt[c]*d^2 + Sqrt[a]*e^ 
2)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*(c*d^4 + a* 
e^4)^2) + (c^(1/4)*d*(3*Sqrt[c]*d^2 + Sqrt[a]*e^2)*ArcTan[1 + (Sqrt[2]*c^( 
1/4)*x)/a^(1/4)])/(8*Sqrt[2]*a^(7/4)*(c*d^4 + a*e^4)) + (e^7*Log[d + e*x]) 
/(c*d^4 + a*e^4)^2 - (c^(1/4)*d*e^4*(Sqrt[c]*d^2 - Sqrt[a]*e^2)*Log[Sqrt[a 
] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*(c*d^4 + 
a*e^4)^2) - (c^(1/4)*d*(3*Sqrt[c]*d^2 - Sqrt[a]*e^2)*Log[Sqrt[a] - Sqrt[2] 
*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(16*Sqrt[2]*a^(7/4)*(c*d^4 + a*e^4)) + 
(c^(1/4)*d*e^4*(Sqrt[c]*d^2 - Sqrt[a]*e^2)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c 
^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*(c*d^4 + a*e^4)^2) + (c^(1/4)* 
d*(3*Sqrt[c]*d^2 - Sqrt[a]*e^2)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + 
Sqrt[c]*x^2])/(16*Sqrt[2]*a^(7/4)*(c*d^4 + a*e^4)) - (e^7*Log[a + c*x^4])/ 
(4*(c*d^4 + a*e^4)^2)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
Maple [A] (verified)

Time = 0.24 (sec) , antiderivative size = 430, normalized size of antiderivative = 0.61

method result size
default \(\frac {c \left (\frac {\frac {d \,e^{2} \left (e^{4} a +c \,d^{4}\right ) x^{3}}{4 a}-\frac {d^{2} e \left (e^{4} a +c \,d^{4}\right ) x^{2}}{4 a}+\frac {d^{3} \left (e^{4} a +c \,d^{4}\right ) x}{4 a}+\frac {e^{3} \left (e^{4} a +c \,d^{4}\right )}{4 c}}{c \,x^{4}+a}+\frac {\frac {\left (7 a \,d^{3} e^{4}+3 c \,d^{7}\right ) \left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{8 a}+\frac {\left (-6 a \,d^{2} e^{5}-2 c \,d^{6} e \right ) \arctan \left (\sqrt {\frac {c}{a}}\, x^{2}\right )}{2 \sqrt {a c}}+\frac {\left (5 a d \,e^{6}+c \,d^{5} e^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{8 c \left (\frac {a}{c}\right )^{\frac {1}{4}}}-\frac {a \,e^{7} \ln \left (c \,x^{4}+a \right )}{c}}{4 a}\right )}{\left (e^{4} a +c \,d^{4}\right )^{2}}+\frac {e^{7} \ln \left (e x +d \right )}{\left (e^{4} a +c \,d^{4}\right )^{2}}\) \(430\)
risch \(\frac {\frac {c d \,e^{2} x^{3}}{4 a \left (e^{4} a +c \,d^{4}\right )}-\frac {d^{2} c e \,x^{2}}{4 a \left (e^{4} a +c \,d^{4}\right )}+\frac {d^{3} c x}{4 a \left (e^{4} a +c \,d^{4}\right )}+\frac {e^{3}}{4 e^{4} a +4 c \,d^{4}}}{c \,x^{4}+a}+\frac {e^{7} \ln \left (e x +d \right )}{a^{2} e^{8}+2 a c \,d^{4} e^{4}+d^{8} c^{2}}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (a^{9} e^{8}+2 a^{8} c \,d^{4} e^{4}+a^{7} c^{2} d^{8}\right ) \textit {\_Z}^{4}+16 a^{7} e^{7} \textit {\_Z}^{3}+\left (96 a^{5} e^{6}+20 a^{4} c \,d^{4} e^{2}\right ) \textit {\_Z}^{2}+\left (256 a^{3} e^{5}+72 a^{2} c \,d^{4} e \right ) \textit {\_Z} +256 e^{4} a +81 c \,d^{4}\right )}{\sum }\textit {\_R} \ln \left (\left (\left (5 a^{9} e^{14}+7 a^{8} c \,d^{4} e^{10}-a^{7} c^{2} d^{8} e^{6}-3 a^{6} c^{3} d^{12} e^{2}\right ) \textit {\_R}^{4}+\left (60 a^{7} e^{13}+64 a^{6} c \,d^{4} e^{9}-4 a^{5} c^{2} d^{8} e^{5}-8 a^{4} c^{3} d^{12} e \right ) \textit {\_R}^{3}+\left (240 a^{5} e^{12}+295 a^{4} c \,d^{4} e^{8}+30 a^{3} c^{2} d^{8} e^{4}-9 a^{2} c^{3} d^{12}\right ) \textit {\_R}^{2}+\left (320 a^{3} e^{11}+560 a^{2} c \,d^{4} e^{7}+64 a \,c^{2} d^{8} e^{3}\right ) \textit {\_R} +324 c \,d^{4} e^{6}\right ) x +\left (6 a^{9} d \,e^{13}+10 a^{8} c \,d^{5} e^{9}+2 a^{7} c^{2} d^{9} e^{5}-2 a^{6} c^{3} d^{13} e \right ) \textit {\_R}^{4}+\left (51 a^{7} d \,e^{12}+67 a^{6} c \,d^{5} e^{8}+13 a^{5} c^{2} d^{9} e^{4}-3 a^{4} c^{3} d^{13}\right ) \textit {\_R}^{3}+\left (136 a^{5} d \,e^{11}+240 a^{4} c \,d^{5} e^{7}+56 a^{3} c^{2} d^{9} e^{3}\right ) \textit {\_R}^{2}+\left (176 a^{3} d \,e^{10}+384 a^{2} c \,d^{5} e^{6}+48 a \,c^{2} d^{9} e^{2}\right ) \textit {\_R} +256 a d \,e^{9}+324 c \,d^{5} e^{5}\right )\right )}{16}\) \(653\)

Input:

int(1/(e*x+d)/(c*x^4+a)^2,x,method=_RETURNVERBOSE)
 

Output:

c/(a*e^4+c*d^4)^2*((1/4*d*e^2*(a*e^4+c*d^4)/a*x^3-1/4*d^2*e*(a*e^4+c*d^4)/ 
a*x^2+1/4*d^3*(a*e^4+c*d^4)/a*x+1/4*e^3*(a*e^4+c*d^4)/c)/(c*x^4+a)+1/4/a*( 
1/8*(7*a*d^3*e^4+3*c*d^7)*(a/c)^(1/4)/a*2^(1/2)*(ln((x^2+(a/c)^(1/4)*x*2^( 
1/2)+(a/c)^(1/2))/(x^2-(a/c)^(1/4)*x*2^(1/2)+(a/c)^(1/2)))+2*arctan(2^(1/2 
)/(a/c)^(1/4)*x+1)+2*arctan(2^(1/2)/(a/c)^(1/4)*x-1))+1/2*(-6*a*d^2*e^5-2* 
c*d^6*e)/(a*c)^(1/2)*arctan((c/a)^(1/2)*x^2)+1/8*(5*a*d*e^6+c*d^5*e^2)/c/( 
a/c)^(1/4)*2^(1/2)*(ln((x^2-(a/c)^(1/4)*x*2^(1/2)+(a/c)^(1/2))/(x^2+(a/c)^ 
(1/4)*x*2^(1/2)+(a/c)^(1/2)))+2*arctan(2^(1/2)/(a/c)^(1/4)*x+1)+2*arctan(2 
^(1/2)/(a/c)^(1/4)*x-1))-a*e^7/c*ln(c*x^4+a)))+e^7*ln(e*x+d)/(a*e^4+c*d^4) 
^2
 

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{(d+e x) \left (a+c x^4\right )^2} \, dx=\text {Timed out} \] Input:

integrate(1/(e*x+d)/(c*x^4+a)^2,x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(d+e x) \left (a+c x^4\right )^2} \, dx=\text {Timed out} \] Input:

integrate(1/(e*x+d)/(c*x**4+a)**2,x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 601, normalized size of antiderivative = 0.85 \[ \int \frac {1}{(d+e x) \left (a+c x^4\right )^2} \, dx =\text {Too large to display} \] Input:

integrate(1/(e*x+d)/(c*x^4+a)^2,x, algorithm="maxima")
 

Output:

e^7*log(e*x + d)/(c^2*d^8 + 2*a*c*d^4*e^4 + a^2*e^8) - 1/32*c*(sqrt(2)*(4* 
sqrt(2)*a^(7/4)*c^(1/4)*e^7 - 3*c^2*d^7 + sqrt(a)*c^(3/2)*d^5*e^2 - 7*a*c* 
d^3*e^4 + 5*a^(3/2)*sqrt(c)*d*e^6)*log(sqrt(c)*x^2 + sqrt(2)*a^(1/4)*c^(1/ 
4)*x + sqrt(a))/(a^(3/4)*c^(5/4)) + sqrt(2)*(4*sqrt(2)*a^(7/4)*c^(1/4)*e^7 
 + 3*c^2*d^7 - sqrt(a)*c^(3/2)*d^5*e^2 + 7*a*c*d^3*e^4 - 5*a^(3/2)*sqrt(c) 
*d*e^6)*log(sqrt(c)*x^2 - sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^ 
(5/4)) - 2*(3*sqrt(2)*a^(1/4)*c^(9/4)*d^7 + sqrt(2)*a^(3/4)*c^(7/4)*d^5*e^ 
2 + 7*sqrt(2)*a^(5/4)*c^(5/4)*d^3*e^4 + 5*sqrt(2)*a^(7/4)*c^(3/4)*d*e^6 + 
4*sqrt(a)*c^2*d^6*e + 12*a^(3/2)*c*d^2*e^5)*arctan(1/2*sqrt(2)*(2*sqrt(c)* 
x + sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(a^(3/4)*sqrt(sqrt(a)* 
sqrt(c))*c^(5/4)) - 2*(3*sqrt(2)*a^(1/4)*c^(9/4)*d^7 + sqrt(2)*a^(3/4)*c^( 
7/4)*d^5*e^2 + 7*sqrt(2)*a^(5/4)*c^(5/4)*d^3*e^4 + 5*sqrt(2)*a^(7/4)*c^(3/ 
4)*d*e^6 - 4*sqrt(a)*c^2*d^6*e - 12*a^(3/2)*c*d^2*e^5)*arctan(1/2*sqrt(2)* 
(2*sqrt(c)*x - sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(a^(3/4)*sq 
rt(sqrt(a)*sqrt(c))*c^(5/4)))/(a*c^2*d^8 + 2*a^2*c*d^4*e^4 + a^3*e^8) + 1/ 
4*(c*d*e^2*x^3 - c*d^2*e*x^2 + c*d^3*x + a*e^3)/(a^2*c*d^4 + a^3*e^4 + (a* 
c^2*d^4 + a^2*c*e^4)*x^4)
 

Giac [A] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 795, normalized size of antiderivative = 1.13 \[ \int \frac {1}{(d+e x) \left (a+c x^4\right )^2} \, dx =\text {Too large to display} \] Input:

integrate(1/(e*x+d)/(c*x^4+a)^2,x, algorithm="giac")
 

Output:

e^8*log(abs(e*x + d))/(c^2*d^8*e + 2*a*c*d^4*e^5 + a^2*e^9) - 1/4*e^7*log( 
abs(c*x^4 + a))/(c^2*d^8 + 2*a*c*d^4*e^4 + a^2*e^8) + 1/8*(4*sqrt(2)*sqrt( 
a*c)*c^2*d^2*e + 3*(a*c^3)^(1/4)*c^2*d^3 + 5*(a*c^3)^(3/4)*d*e^2)*arctan(1 
/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(sqrt(2)*a^2*c^3*d^4 + 
 sqrt(2)*a^3*c^2*e^4 + 4*sqrt(2)*sqrt(a*c)*a^2*c^2*d^2*e^2 - 4*(a*c^3)^(1/ 
4)*a^2*c^2*d^3*e - 4*(a*c^3)^(3/4)*a^2*d*e^3) + 1/8*(4*sqrt(2)*sqrt(a*c)*c 
^2*d^2*e + 3*(a*c^3)^(1/4)*c^2*d^3 + 5*(a*c^3)^(3/4)*d*e^2)*arctan(1/2*sqr 
t(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(sqrt(2)*a^2*c^3*d^4 + sqrt( 
2)*a^3*c^2*e^4 + 4*sqrt(2)*sqrt(a*c)*a^2*c^2*d^2*e^2 + 4*(a*c^3)^(1/4)*a^2 
*c^2*d^3*e + 4*(a*c^3)^(3/4)*a^2*d*e^3) + 1/32*(3*sqrt(2)*(a*c^3)^(1/4)*c^ 
3*d^7 + 7*sqrt(2)*(a*c^3)^(1/4)*a*c^2*d^3*e^4 - sqrt(2)*(a*c^3)^(3/4)*c*d^ 
5*e^2 - 5*sqrt(2)*(a*c^3)^(3/4)*a*d*e^6)*log(x^2 + sqrt(2)*x*(a/c)^(1/4) + 
 sqrt(a/c))/(a^2*c^4*d^8 + 2*a^3*c^3*d^4*e^4 + a^4*c^2*e^8) - 1/32*(3*sqrt 
(2)*(a*c^3)^(1/4)*c^3*d^7 + 7*sqrt(2)*(a*c^3)^(1/4)*a*c^2*d^3*e^4 - sqrt(2 
)*(a*c^3)^(3/4)*c*d^5*e^2 - 5*sqrt(2)*(a*c^3)^(3/4)*a*d*e^6)*log(x^2 - sqr 
t(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a^2*c^4*d^8 + 2*a^3*c^3*d^4*e^4 + a^4*c^2 
*e^8) + 1/4*(a*c*d^4*e^3 + a^2*e^7 + (c^2*d^5*e^2 + a*c*d*e^6)*x^3 - (c^2* 
d^6*e + a*c*d^2*e^5)*x^2 + (c^2*d^7 + a*c*d^3*e^4)*x)/((c*d^4 + a*e^4)^2*( 
c*x^4 + a)*a)
                                                                                    
                                                                                    
 

Mupad [B] (verification not implemented)

Time = 22.28 (sec) , antiderivative size = 1591, normalized size of antiderivative = 2.26 \[ \int \frac {1}{(d+e x) \left (a+c x^4\right )^2} \, dx=\text {Too large to display} \] Input:

int(1/((a + c*x^4)^2*(d + e*x)),x)
 

Output:

e^3/(4*(a^2*e^4 + c^2*d^4*x^4 + a*c*d^4 + a*c*e^4*x^4)) + symsum(log((81*c 
^5*d^5*e^6 + 64*a*c^4*d*e^10)/(256*(a^6*e^8 + a^4*c^2*d^8 + 2*a^5*c*d^4*e^ 
4)) + root(131072*a^8*c*d^4*e^4*z^4 + 65536*a^7*c^2*d^8*z^4 + 65536*a^9*e^ 
8*z^4 + 65536*a^7*e^7*z^3 + 5120*a^4*c*d^4*e^2*z^2 + 24576*a^5*e^6*z^2 + 1 
152*a^2*c*d^4*e*z + 4096*a^3*e^5*z + 81*c*d^4 + 256*a*e^4, z, k)*(root(131 
072*a^8*c*d^4*e^4*z^4 + 65536*a^7*c^2*d^8*z^4 + 65536*a^9*e^8*z^4 + 65536* 
a^7*e^7*z^3 + 5120*a^4*c*d^4*e^2*z^2 + 24576*a^5*e^6*z^2 + 1152*a^2*c*d^4* 
e*z + 4096*a^3*e^5*z + 81*c*d^4 + 256*a*e^4, z, k)*(root(131072*a^8*c*d^4* 
e^4*z^4 + 65536*a^7*c^2*d^8*z^4 + 65536*a^9*e^8*z^4 + 65536*a^7*e^7*z^3 + 
5120*a^4*c*d^4*e^2*z^2 + 24576*a^5*e^6*z^2 + 1152*a^2*c*d^4*e*z + 4096*a^3 
*e^5*z + 81*c*d^4 + 256*a*e^4, z, k)*(root(131072*a^8*c*d^4*e^4*z^4 + 6553 
6*a^7*c^2*d^8*z^4 + 65536*a^9*e^8*z^4 + 65536*a^7*e^7*z^3 + 5120*a^4*c*d^4 
*e^2*z^2 + 24576*a^5*e^6*z^2 + 1152*a^2*c*d^4*e*z + 4096*a^3*e^5*z + 81*c* 
d^4 + 256*a*e^4, z, k)*((98304*a^9*c^4*d*e^14 - 32768*a^6*c^7*d^13*e^2 + 3 
2768*a^7*c^6*d^9*e^6 + 163840*a^8*c^5*d^5*e^10)/(256*(a^6*e^8 + a^4*c^2*d^ 
8 + 2*a^5*c*d^4*e^4)) + (x*(81920*a^9*c^4*e^15 - 49152*a^6*c^7*d^12*e^3 - 
16384*a^7*c^6*d^8*e^7 + 114688*a^8*c^5*d^4*e^11))/(256*(a^6*e^8 + a^4*c^2* 
d^8 + 2*a^5*c*d^4*e^4))) + (52224*a^7*c^4*d*e^13 - 3072*a^4*c^7*d^13*e + 1 
3312*a^5*c^6*d^9*e^5 + 68608*a^6*c^5*d^5*e^9)/(256*(a^6*e^8 + a^4*c^2*d^8 
+ 2*a^5*c*d^4*e^4)) + (x*(61440*a^7*c^4*e^14 - 8192*a^4*c^7*d^12*e^2 - ...
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 1946, normalized size of antiderivative = 2.77 \[ \int \frac {1}{(d+e x) \left (a+c x^4\right )^2} \, dx =\text {Too large to display} \] Input:

int(1/(e*x+d)/(c*x^4+a)^2,x)
 

Output:

( - 10*c**(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt( 
c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a**2*d*e**6 - 2*c**(1/4)*a**(3/4)*sqrt( 
2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt( 
2)))*a*c*d**5*e**2 - 10*c**(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)* 
sqrt(2) - 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a*c*d*e**6*x**4 - 2*c* 
*(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c* 
*(1/4)*a**(1/4)*sqrt(2)))*c**2*d**5*e**2*x**4 - 14*c**(3/4)*a**(1/4)*sqrt( 
2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt( 
2)))*a**2*d**3*e**4 - 6*c**(3/4)*a**(1/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)* 
sqrt(2) - 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a*c*d**7 - 14*c**(3/4) 
*a**(1/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c**(1/4) 
*a**(1/4)*sqrt(2)))*a*c*d**3*e**4*x**4 - 6*c**(3/4)*a**(1/4)*sqrt(2)*atan( 
(c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*c** 
2*d**7*x**4 + 24*sqrt(c)*sqrt(a)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt( 
c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a**2*d**2*e**5 + 8*sqrt(c)*sqrt(a)*atan 
((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a* 
c*d**6*e + 24*sqrt(c)*sqrt(a)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)* 
x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a*c*d**2*e**5*x**4 + 8*sqrt(c)*sqrt(a)*ata 
n((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*c 
**2*d**6*e*x**4 + 10*c**(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*...