\(\int \frac {d+e x}{(a+b x^2+c x^4)^2} \, dx\) [243]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 330 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx=-\frac {e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {d x \left (b^2-2 a c+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (b^2-12 a c+b \sqrt {b^2-4 a c}\right ) d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {c} \left (b^2-12 a c-b \sqrt {b^2-4 a c}\right ) d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {2 c e \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \] Output:

-1/2*e*(2*c*x^2+b)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/2*d*x*(b*c*x^2-2*a*c+b^2 
)/a/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/4*c^(1/2)*(b^2-12*a*c+b*(-4*a*c+b^2)^(1 
/2))*d*arctan(2^(1/2)*c^(1/2)*x/(b-(-4*a*c+b^2)^(1/2))^(1/2))*2^(1/2)/a/(- 
4*a*c+b^2)^(3/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)-1/4*c^(1/2)*(b^2-12*a*c-b*(- 
4*a*c+b^2)^(1/2))*d*arctan(2^(1/2)*c^(1/2)*x/(b+(-4*a*c+b^2)^(1/2))^(1/2)) 
*2^(1/2)/a/(-4*a*c+b^2)^(3/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)+2*c*e*arctanh(( 
2*c*x^2+b)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(3/2)
 

Mathematica [A] (verified)

Time = 0.97 (sec) , antiderivative size = 341, normalized size of antiderivative = 1.03 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {1}{4} \left (\frac {2 a b e+4 a c x (d+e x)-2 b d x \left (b+c x^2\right )}{a \left (-b^2+4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {2} \sqrt {c} \left (b^2-12 a c+b \sqrt {b^2-4 a c}\right ) d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \sqrt {c} \left (-b^2+12 a c+b \sqrt {b^2-4 a c}\right ) d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {4 c e \log \left (-b+\sqrt {b^2-4 a c}-2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac {4 c e \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}\right ) \] Input:

Integrate[(d + e*x)/(a + b*x^2 + c*x^4)^2,x]
 

Output:

((2*a*b*e + 4*a*c*x*(d + e*x) - 2*b*d*x*(b + c*x^2))/(a*(-b^2 + 4*a*c)*(a 
+ b*x^2 + c*x^4)) + (Sqrt[2]*Sqrt[c]*(b^2 - 12*a*c + b*Sqrt[b^2 - 4*a*c])* 
d*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c 
)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*Sqrt[c]*(-b^2 + 12*a*c + b 
*Sqrt[b^2 - 4*a*c])*d*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c 
]]])/(a*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - (4*c*e*Log[-b + 
 Sqrt[b^2 - 4*a*c] - 2*c*x^2])/(b^2 - 4*a*c)^(3/2) + (4*c*e*Log[b + Sqrt[b 
^2 - 4*a*c] + 2*c*x^2])/(b^2 - 4*a*c)^(3/2))/4
 

Rubi [A] (verified)

Time = 0.98 (sec) , antiderivative size = 316, normalized size of antiderivative = 0.96, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {2202, 27, 1405, 25, 1432, 1086, 1083, 219, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 2202

\(\displaystyle \int \frac {d}{\left (c x^4+b x^2+a\right )^2}dx+\int \frac {e x}{\left (c x^4+b x^2+a\right )^2}dx\)

\(\Big \downarrow \) 27

\(\displaystyle d \int \frac {1}{\left (c x^4+b x^2+a\right )^2}dx+e \int \frac {x}{\left (c x^4+b x^2+a\right )^2}dx\)

\(\Big \downarrow \) 1405

\(\displaystyle d \left (\frac {x \left (-2 a c+b^2+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\int -\frac {b^2+c x^2 b-6 a c}{c x^4+b x^2+a}dx}{2 a \left (b^2-4 a c\right )}\right )+e \int \frac {x}{\left (c x^4+b x^2+a\right )^2}dx\)

\(\Big \downarrow \) 25

\(\displaystyle d \left (\frac {\int \frac {b^2+c x^2 b-6 a c}{c x^4+b x^2+a}dx}{2 a \left (b^2-4 a c\right )}+\frac {x \left (-2 a c+b^2+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )+e \int \frac {x}{\left (c x^4+b x^2+a\right )^2}dx\)

\(\Big \downarrow \) 1432

\(\displaystyle d \left (\frac {\int \frac {b^2+c x^2 b-6 a c}{c x^4+b x^2+a}dx}{2 a \left (b^2-4 a c\right )}+\frac {x \left (-2 a c+b^2+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )+\frac {1}{2} e \int \frac {1}{\left (c x^4+b x^2+a\right )^2}dx^2\)

\(\Big \downarrow \) 1086

\(\displaystyle d \left (\frac {\int \frac {b^2+c x^2 b-6 a c}{c x^4+b x^2+a}dx}{2 a \left (b^2-4 a c\right )}+\frac {x \left (-2 a c+b^2+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )+\frac {1}{2} e \left (-\frac {2 c \int \frac {1}{c x^4+b x^2+a}dx^2}{b^2-4 a c}-\frac {b+2 c x^2}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 1083

\(\displaystyle d \left (\frac {\int \frac {b^2+c x^2 b-6 a c}{c x^4+b x^2+a}dx}{2 a \left (b^2-4 a c\right )}+\frac {x \left (-2 a c+b^2+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )+\frac {1}{2} e \left (\frac {4 c \int \frac {1}{-x^4+b^2-4 a c}d\left (2 c x^2+b\right )}{b^2-4 a c}-\frac {b+2 c x^2}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle d \left (\frac {\int \frac {b^2+c x^2 b-6 a c}{c x^4+b x^2+a}dx}{2 a \left (b^2-4 a c\right )}+\frac {x \left (-2 a c+b^2+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )+\frac {1}{2} e \left (\frac {4 c \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}-\frac {b+2 c x^2}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 1480

\(\displaystyle d \left (\frac {\frac {1}{2} c \left (\frac {b^2-12 a c}{\sqrt {b^2-4 a c}}+b\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx+\frac {1}{2} c \left (b-\frac {b^2-12 a c}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{2 a \left (b^2-4 a c\right )}+\frac {x \left (-2 a c+b^2+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )+\frac {1}{2} e \left (\frac {4 c \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}-\frac {b+2 c x^2}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle d \left (\frac {\frac {\sqrt {c} \left (\frac {b^2-12 a c}{\sqrt {b^2-4 a c}}+b\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (b-\frac {b^2-12 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {\sqrt {b^2-4 a c}+b}}}{2 a \left (b^2-4 a c\right )}+\frac {x \left (-2 a c+b^2+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )+\frac {1}{2} e \left (\frac {4 c \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}-\frac {b+2 c x^2}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

Input:

Int[(d + e*x)/(a + b*x^2 + c*x^4)^2,x]
 

Output:

d*((x*(b^2 - 2*a*c + b*c*x^2))/(2*a*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + ( 
(Sqrt[c]*(b + (b^2 - 12*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x) 
/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sq 
rt[c]*(b - (b^2 - 12*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sq 
rt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(2*a*(b 
^2 - 4*a*c))) + (e*(-((b + 2*c*x^2)/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4))) + 
 (4*c*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(3/2)))/2
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1086
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x) 
*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c))), x] - Simp[2*c*((2*p + 
 3)/((p + 1)*(b^2 - 4*a*c)))   Int[(a + b*x + c*x^2)^(p + 1), x], x] /; Fre 
eQ[{a, b, c}, x] && ILtQ[p, -1]
 

rule 1405
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(b^2 
- 2*a*c + b*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c)) 
), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(b^2 - 2*a*c + 2*(p + 1)*( 
b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; Fr 
eeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]
 

rule 1432
Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[1/2 
 Subst[Int[(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 2202
Int[(Pn_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{n 
 = Expon[Pn, x], k}, Int[Sum[Coeff[Pn, x, 2*k]*x^(2*k), {k, 0, n/2}]*(a + b 
*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pn, x, 2*k + 1]*x^(2*k), {k, 0, (n - 
1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pn, x] 
 &&  !PolyQ[Pn, x^2]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.19 (sec) , antiderivative size = 209, normalized size of antiderivative = 0.63

method result size
risch \(\frac {-\frac {x^{3} b c d}{2 \left (4 a c -b^{2}\right ) a}+\frac {x^{2} c e}{4 a c -b^{2}}+\frac {d \left (2 a c -b^{2}\right ) x}{2 a \left (4 a c -b^{2}\right )}+\frac {e b}{8 a c -2 b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (-\frac {\textit {\_R}^{2} b c d}{\left (4 a c -b^{2}\right ) a}+\frac {4 c e \textit {\_R}}{4 a c -b^{2}}+\frac {d \left (6 a c -b^{2}\right )}{a \left (4 a c -b^{2}\right )}\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3} c +b \textit {\_R}}\right )}{4}\) \(209\)
default \(16 c^{2} \left (-\frac {\frac {\frac {\left (4 \sqrt {-4 a c +b^{2}}\, a c -\sqrt {-4 a c +b^{2}}\, b^{2}+4 a b c -b^{3}\right ) d x}{16 a \,c^{2}}-\frac {e \left (4 a c -b^{2}\right )}{8 c^{2}}}{x^{2}+\frac {b}{2 c}-\frac {\sqrt {-4 a c +b^{2}}}{2 c}}+\frac {2 \sqrt {-4 a c +b^{2}}\, a e \ln \left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right )+\frac {\left (-12 \sqrt {-4 a c +b^{2}}\, a c d +\sqrt {-4 a c +b^{2}}\, b^{2} d -4 a b c d +b^{3} d \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}}{8 c a}}{4 \left (4 a c -b^{2}\right )^{2}}+\frac {\frac {-\frac {\left (-4 \sqrt {-4 a c +b^{2}}\, a c +\sqrt {-4 a c +b^{2}}\, b^{2}+4 a b c -b^{3}\right ) d x}{16 a \,c^{2}}+\frac {e \left (4 a c -b^{2}\right )}{8 c^{2}}}{x^{2}+\frac {\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}}+\frac {2 \sqrt {-4 a c +b^{2}}\, a e \ln \left (2 c \,x^{2}+\sqrt {-4 a c +b^{2}}+b \right )+\frac {\left (12 \sqrt {-4 a c +b^{2}}\, a c d -\sqrt {-4 a c +b^{2}}\, b^{2} d -4 a b c d +b^{3} d \right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}}{8 c a}}{4 \left (4 a c -b^{2}\right )^{2}}\right )\) \(489\)

Input:

int((e*x+d)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)
 

Output:

(-1/2/(4*a*c-b^2)/a*x^3*b*c*d+1/(4*a*c-b^2)*x^2*c*e+1/2*d*(2*a*c-b^2)/a/(4 
*a*c-b^2)*x+1/2*b*e/(4*a*c-b^2))/(c*x^4+b*x^2+a)+1/4*sum((-1/(4*a*c-b^2)/a 
*_R^2*b*c*d+4*c*e/(4*a*c-b^2)*_R+d*(6*a*c-b^2)/a/(4*a*c-b^2))/(2*_R^3*c+_R 
*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \] Input:

integrate((e*x+d)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \] Input:

integrate((e*x+d)/(c*x**4+b*x**2+a)**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {e x + d}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \] Input:

integrate((e*x+d)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")
 

Output:

1/2*(b*c*d*x^3 - 2*a*c*e*x^2 - a*b*e + (b^2 - 2*a*c)*d*x)/((a*b^2*c - 4*a^ 
2*c^2)*x^4 + a^2*b^2 - 4*a^3*c + (a*b^3 - 4*a^2*b*c)*x^2) + 1/2*integrate( 
(b*c*d*x^2 - 4*a*c*e*x + (b^2 - 6*a*c)*d)/(c*x^4 + b*x^2 + a), x)/(a*b^2 - 
 4*a^2*c)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3429 vs. \(2 (278) = 556\).

Time = 1.02 (sec) , antiderivative size = 3429, normalized size of antiderivative = 10.39 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \] Input:

integrate((e*x+d)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")
 

Output:

1/2*(b*c*d*x^3 - 2*a*c*e*x^2 + b^2*d*x - 2*a*c*d*x - a*b*e)/((c*x^4 + b*x^ 
2 + a)*(a*b^2 - 4*a^2*c)) - 1/16*((2*b^3*c^2 - 8*a*b*c^3 - sqrt(2)*sqrt(b^ 
2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3 + 4*sqrt(2)*sqrt(b^2 - 4*a* 
c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqr 
t(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2*(b^2 - 4*a*c)*b*c^2)*(a*b^2 - 4*a^2*c)^2*d 
- 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^6 - 14*sqrt(2)*sqrt(b*c + 
 sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c 
)*a*b^5*c - 2*a*b^6*c + 64*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^2 
*c^2 + 20*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^2 + sqrt(2)*sq 
rt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 + 28*a^2*b^4*c^2 - 96*sqrt(2)*sqrt 
(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*c^3 - 48*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a 
*c)*c)*a^3*b*c^3 - 10*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 
- 128*a^3*b^2*c^3 + 24*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*c^4 + 1 
92*a^4*c^4 + 2*(b^2 - 4*a*c)*a*b^4*c - 20*(b^2 - 4*a*c)*a^2*b^2*c^2 + 48*( 
b^2 - 4*a*c)*a^3*c^3)*d*abs(a*b^2 - 4*a^2*c) + (2*a^2*b^7*c^2 - 40*a^3*b^5 
*c^3 + 224*a^4*b^3*c^4 - 384*a^5*b*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b* 
c + sqrt(b^2 - 4*a*c)*c)*a^2*b^7 + 20*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
 sqrt(b^2 - 4*a*c)*c)*a^3*b^5*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + s 
qrt(b^2 - 4*a*c)*c)*a^2*b^6*c - 112*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c ...
                                                                                    
                                                                                    
 

Mupad [B] (verification not implemented)

Time = 22.96 (sec) , antiderivative size = 2382, normalized size of antiderivative = 7.22 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \] Input:

int((d + e*x)/(a + b*x^2 + c*x^4)^2,x)
 

Output:

((b*e)/(2*(4*a*c - b^2)) + (c*e*x^2)/(4*a*c - b^2) + (d*x*(2*a*c - b^2))/( 
2*a*(4*a*c - b^2)) - (b*c*d*x^3)/(2*a*(4*a*c - b^2)))/(a + b*x^2 + c*x^4) 
+ symsum(log((5*b^3*c^4*d^3 - 96*a^2*c^5*d*e^2 - 36*a*b*c^5*d^3 + 16*a*b^2 
*c^4*d*e^2)/(8*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)) - r 
oot(1572864*a^8*b^2*c^5*z^4 - 983040*a^7*b^4*c^4*z^4 + 327680*a^6*b^6*c^3* 
z^4 - 61440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*c*z^4 - 1048576*a^9*c^6*z^4 - 
256*a^3*b^12*z^4 + 61440*a^5*b*c^5*d^2*z^2 + 432*a*b^9*c*d^2*z^2 + 24576*a 
^5*b^2*c^4*e^2*z^2 - 6144*a^4*b^4*c^3*e^2*z^2 + 512*a^3*b^6*c^2*e^2*z^2 - 
61440*a^4*b^3*c^4*d^2*z^2 + 24064*a^3*b^5*c^3*d^2*z^2 - 4608*a^2*b^7*c^2*d 
^2*z^2 - 32768*a^6*c^5*e^2*z^2 - 16*b^11*d^2*z^2 - 672*a*b^6*c^2*d^2*e*z - 
 15872*a^3*b^2*c^4*d^2*e*z + 4992*a^2*b^4*c^3*d^2*e*z + 18432*a^4*c^5*d^2* 
e*z + 32*b^8*c*d^2*e*z - 960*a^2*b*c^4*d^2*e^2 + 240*a*b^3*c^3*d^2*e^2 - 1 
6*b^5*c^2*d^2*e^2 + 360*a*b^2*c^4*d^4 - 256*a^3*c^4*e^4 - 25*b^4*c^3*d^4 - 
 1296*a^2*c^5*d^4, z, k)*(root(1572864*a^8*b^2*c^5*z^4 - 983040*a^7*b^4*c^ 
4*z^4 + 327680*a^6*b^6*c^3*z^4 - 61440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*c*z 
^4 - 1048576*a^9*c^6*z^4 - 256*a^3*b^12*z^4 + 61440*a^5*b*c^5*d^2*z^2 + 43 
2*a*b^9*c*d^2*z^2 + 24576*a^5*b^2*c^4*e^2*z^2 - 6144*a^4*b^4*c^3*e^2*z^2 + 
 512*a^3*b^6*c^2*e^2*z^2 - 61440*a^4*b^3*c^4*d^2*z^2 + 24064*a^3*b^5*c^3*d 
^2*z^2 - 4608*a^2*b^7*c^2*d^2*z^2 - 32768*a^6*c^5*e^2*z^2 - 16*b^11*d^2*z^ 
2 - 672*a*b^6*c^2*d^2*e*z - 15872*a^3*b^2*c^4*d^2*e*z + 4992*a^2*b^4*c^...
 

Reduce [B] (verification not implemented)

Time = 0.45 (sec) , antiderivative size = 2923, normalized size of antiderivative = 8.86 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx =\text {Too large to display} \] Input:

int((e*x+d)/(c*x^4+b*x^2+a)^2,x)
 

Output:

( - 16*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt( 
2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**3*b* 
c*e - 16*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqr 
t(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**2* 
b**2*c*e*x**2 - 16*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b) 
*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + 
 b))*a**2*b*c**2*e*x**4 + 16*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqr 
t(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**2* 
b**2*c*d - 2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt 
(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b**4*d + 16*sqrt(a) 
*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c) 
*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b**3*c*d*x**2 + 16*sqrt(a)*sqrt(2*sqrt( 
c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sq 
rt(c)*sqrt(a) + b))*a*b**2*c**2*d*x**4 - 2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) 
+ b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt( 
a) + b))*b**5*d*x**2 - 2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2* 
sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b**4*c*d* 
x**4 - 24*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) 
 - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**3*b*c*d + 2*sqrt(c)*s 
qrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c...