\(\int \frac {1}{(a+b x^2+c x^4)^2} \, dx\) [244]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 14, antiderivative size = 252 \[ \int \frac {1}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {x \left (b^2-2 a c+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (b^2-12 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {c} \left (b^2-12 a c-b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}} \] Output:

1/2*x*(b*c*x^2-2*a*c+b^2)/a/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/4*c^(1/2)*(b^2- 
12*a*c+b*(-4*a*c+b^2)^(1/2))*arctan(2^(1/2)*c^(1/2)*x/(b-(-4*a*c+b^2)^(1/2 
))^(1/2))*2^(1/2)/a/(-4*a*c+b^2)^(3/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)-1/4*c^ 
(1/2)*(b^2-12*a*c-b*(-4*a*c+b^2)^(1/2))*arctan(2^(1/2)*c^(1/2)*x/(b+(-4*a* 
c+b^2)^(1/2))^(1/2))*2^(1/2)/a/(-4*a*c+b^2)^(3/2)/(b+(-4*a*c+b^2)^(1/2))^( 
1/2)
 

Mathematica [A] (verified)

Time = 0.50 (sec) , antiderivative size = 243, normalized size of antiderivative = 0.96 \[ \int \frac {1}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {\frac {2 x \left (b^2-2 a c+b c x^2\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {2} \sqrt {c} \left (b^2-12 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \sqrt {c} \left (-b^2+12 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}}{4 a} \] Input:

Integrate[(a + b*x^2 + c*x^4)^(-2),x]
 

Output:

((2*x*(b^2 - 2*a*c + b*c*x^2))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (Sqrt 
[2]*Sqrt[c]*(b^2 - 12*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x 
)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4 
*a*c]]) + (Sqrt[2]*Sqrt[c]*(-b^2 + 12*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(S 
qrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(3/2)*Sqrt[ 
b + Sqrt[b^2 - 4*a*c]]))/(4*a)
 

Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 236, normalized size of antiderivative = 0.94, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {1405, 25, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 1405

\(\displaystyle \frac {x \left (-2 a c+b^2+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\int -\frac {b^2+c x^2 b-6 a c}{c x^4+b x^2+a}dx}{2 a \left (b^2-4 a c\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {b^2+c x^2 b-6 a c}{c x^4+b x^2+a}dx}{2 a \left (b^2-4 a c\right )}+\frac {x \left (-2 a c+b^2+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {\frac {1}{2} c \left (\frac {b^2-12 a c}{\sqrt {b^2-4 a c}}+b\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx+\frac {1}{2} c \left (b-\frac {b^2-12 a c}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{2 a \left (b^2-4 a c\right )}+\frac {x \left (-2 a c+b^2+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\sqrt {c} \left (\frac {b^2-12 a c}{\sqrt {b^2-4 a c}}+b\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (b-\frac {b^2-12 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {\sqrt {b^2-4 a c}+b}}}{2 a \left (b^2-4 a c\right )}+\frac {x \left (-2 a c+b^2+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

Input:

Int[(a + b*x^2 + c*x^4)^(-2),x]
 

Output:

(x*(b^2 - 2*a*c + b*c*x^2))/(2*a*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + ((Sq 
rt[c]*(b + (b^2 - 12*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sq 
rt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[ 
c]*(b - (b^2 - 12*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[ 
b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(2*a*(b^2 
- 4*a*c))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1405
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(b^2 
- 2*a*c + b*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c)) 
), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(b^2 - 2*a*c + 2*(p + 1)*( 
b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; Fr 
eeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.11 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.60

method result size
risch \(\frac {-\frac {b \,x^{3} c}{2 a \left (4 a c -b^{2}\right )}+\frac {\left (2 a c -b^{2}\right ) x}{2 a \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (-\frac {b c \,\textit {\_R}^{2}}{4 a c -b^{2}}+\frac {6 a c -b^{2}}{4 a c -b^{2}}\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3} c +b \textit {\_R}}}{4 a}\) \(151\)
default \(16 c^{2} \left (-\frac {-\frac {\left (-b \sqrt {-4 a c +b^{2}}+4 a c -b^{2}\right ) x}{16 a \,c^{2} \left (x^{2}+\frac {b}{2 c}-\frac {\sqrt {-4 a c +b^{2}}}{2 c}\right )}-\frac {\left (b^{2}-12 a c +b \sqrt {-4 a c +b^{2}}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{16 a c \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}}{4 \sqrt {-4 a c +b^{2}}\, \left (4 a c -b^{2}\right )}-\frac {\frac {\left (b \sqrt {-4 a c +b^{2}}+4 a c -b^{2}\right ) x}{16 a \,c^{2} \left (x^{2}+\frac {\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}\right )}+\frac {\left (b \sqrt {-4 a c +b^{2}}+12 a c -b^{2}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{16 a c \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}}{4 \sqrt {-4 a c +b^{2}}\, \left (4 a c -b^{2}\right )}\right )\) \(320\)

Input:

int(1/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)
 

Output:

(-1/2*b/a/(4*a*c-b^2)*x^3*c+1/2*(2*a*c-b^2)/a/(4*a*c-b^2)*x)/(c*x^4+b*x^2+ 
a)+1/4/a*sum((-b*c/(4*a*c-b^2)*_R^2+(6*a*c-b^2)/(4*a*c-b^2))/(2*_R^3*c+_R* 
b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2309 vs. \(2 (206) = 412\).

Time = 0.23 (sec) , antiderivative size = 2309, normalized size of antiderivative = 9.16 \[ \int \frac {1}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(1/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")
 

Output:

1/4*(2*b*c*x^3 + sqrt(1/2)*((a*b^2*c - 4*a^2*c^2)*x^4 + a^2*b^2 - 4*a^3*c 
+ (a*b^3 - 4*a^2*b*c)*x^2)*sqrt(-(b^5 - 15*a*b^3*c + 60*a^2*b*c^2 + (a^3*b 
^6 - 12*a^4*b^4*c + 48*a^5*b^2*c^2 - 64*a^6*c^3)*sqrt((b^4 - 18*a*b^2*c + 
81*a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3* 
b^6 - 12*a^4*b^4*c + 48*a^5*b^2*c^2 - 64*a^6*c^3))*log((5*b^4*c^2 - 81*a*b 
^2*c^3 + 324*a^2*c^4)*x + 1/2*sqrt(1/2)*(b^8 - 23*a*b^6*c + 190*a^2*b^4*c^ 
2 - 672*a^3*b^2*c^3 + 864*a^4*c^4 - (a^3*b^9 - 20*a^4*b^7*c + 144*a^5*b^5* 
c^2 - 448*a^6*b^3*c^3 + 512*a^7*b*c^4)*sqrt((b^4 - 18*a*b^2*c + 81*a^2*c^2 
)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))*sqrt(-(b^5 - 15 
*a*b^3*c + 60*a^2*b*c^2 + (a^3*b^6 - 12*a^4*b^4*c + 48*a^5*b^2*c^2 - 64*a^ 
6*c^3)*sqrt((b^4 - 18*a*b^2*c + 81*a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a 
^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^6 - 12*a^4*b^4*c + 48*a^5*b^2*c^2 - 64*a 
^6*c^3))) - sqrt(1/2)*((a*b^2*c - 4*a^2*c^2)*x^4 + a^2*b^2 - 4*a^3*c + (a* 
b^3 - 4*a^2*b*c)*x^2)*sqrt(-(b^5 - 15*a*b^3*c + 60*a^2*b*c^2 + (a^3*b^6 - 
12*a^4*b^4*c + 48*a^5*b^2*c^2 - 64*a^6*c^3)*sqrt((b^4 - 18*a*b^2*c + 81*a^ 
2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^6 - 
 12*a^4*b^4*c + 48*a^5*b^2*c^2 - 64*a^6*c^3))*log((5*b^4*c^2 - 81*a*b^2*c^ 
3 + 324*a^2*c^4)*x - 1/2*sqrt(1/2)*(b^8 - 23*a*b^6*c + 190*a^2*b^4*c^2 - 6 
72*a^3*b^2*c^3 + 864*a^4*c^4 - (a^3*b^9 - 20*a^4*b^7*c + 144*a^5*b^5*c^2 - 
 448*a^6*b^3*c^3 + 512*a^7*b*c^4)*sqrt((b^4 - 18*a*b^2*c + 81*a^2*c^2)/...
 

Sympy [A] (verification not implemented)

Time = 119.81 (sec) , antiderivative size = 394, normalized size of antiderivative = 1.56 \[ \int \frac {1}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {- b c x^{3} + x \left (2 a c - b^{2}\right )}{8 a^{3} c - 2 a^{2} b^{2} + x^{4} \cdot \left (8 a^{2} c^{2} - 2 a b^{2} c\right ) + x^{2} \cdot \left (8 a^{2} b c - 2 a b^{3}\right )} + \operatorname {RootSum} {\left (t^{4} \cdot \left (1048576 a^{9} c^{6} - 1572864 a^{8} b^{2} c^{5} + 983040 a^{7} b^{4} c^{4} - 327680 a^{6} b^{6} c^{3} + 61440 a^{5} b^{8} c^{2} - 6144 a^{4} b^{10} c + 256 a^{3} b^{12}\right ) + t^{2} \left (- 61440 a^{5} b c^{5} + 61440 a^{4} b^{3} c^{4} - 24064 a^{3} b^{5} c^{3} + 4608 a^{2} b^{7} c^{2} - 432 a b^{9} c + 16 b^{11}\right ) + 1296 a^{2} c^{5} - 360 a b^{2} c^{4} + 25 b^{4} c^{3}, \left ( t \mapsto t \log {\left (x + \frac {32768 t^{3} a^{7} b c^{4} - 28672 t^{3} a^{6} b^{3} c^{3} + 9216 t^{3} a^{5} b^{5} c^{2} - 1280 t^{3} a^{4} b^{7} c + 64 t^{3} a^{3} b^{9} + 1728 t a^{4} c^{4} - 2304 t a^{3} b^{2} c^{3} + 740 t a^{2} b^{4} c^{2} - 92 t a b^{6} c + 4 t b^{8}}{324 a^{2} c^{4} - 81 a b^{2} c^{3} + 5 b^{4} c^{2}} \right )} \right )\right )} \] Input:

integrate(1/(c*x**4+b*x**2+a)**2,x)
 

Output:

(-b*c*x**3 + x*(2*a*c - b**2))/(8*a**3*c - 2*a**2*b**2 + x**4*(8*a**2*c**2 
 - 2*a*b**2*c) + x**2*(8*a**2*b*c - 2*a*b**3)) + RootSum(_t**4*(1048576*a* 
*9*c**6 - 1572864*a**8*b**2*c**5 + 983040*a**7*b**4*c**4 - 327680*a**6*b** 
6*c**3 + 61440*a**5*b**8*c**2 - 6144*a**4*b**10*c + 256*a**3*b**12) + _t** 
2*(-61440*a**5*b*c**5 + 61440*a**4*b**3*c**4 - 24064*a**3*b**5*c**3 + 4608 
*a**2*b**7*c**2 - 432*a*b**9*c + 16*b**11) + 1296*a**2*c**5 - 360*a*b**2*c 
**4 + 25*b**4*c**3, Lambda(_t, _t*log(x + (32768*_t**3*a**7*b*c**4 - 28672 
*_t**3*a**6*b**3*c**3 + 9216*_t**3*a**5*b**5*c**2 - 1280*_t**3*a**4*b**7*c 
 + 64*_t**3*a**3*b**9 + 1728*_t*a**4*c**4 - 2304*_t*a**3*b**2*c**3 + 740*_ 
t*a**2*b**4*c**2 - 92*_t*a*b**6*c + 4*_t*b**8)/(324*a**2*c**4 - 81*a*b**2* 
c**3 + 5*b**4*c**2))))
 

Maxima [F]

\[ \int \frac {1}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {1}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \] Input:

integrate(1/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")
 

Output:

1/2*(b*c*x^3 + (b^2 - 2*a*c)*x)/((a*b^2*c - 4*a^2*c^2)*x^4 + a^2*b^2 - 4*a 
^3*c + (a*b^3 - 4*a^2*b*c)*x^2) + 1/2*integrate((b*c*x^2 + b^2 - 6*a*c)/(c 
*x^4 + b*x^2 + a), x)/(a*b^2 - 4*a^2*c)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2682 vs. \(2 (206) = 412\).

Time = 0.40 (sec) , antiderivative size = 2682, normalized size of antiderivative = 10.64 \[ \int \frac {1}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(1/(c*x^4+b*x^2+a)^2,x, algorithm="giac")
 

Output:

1/2*(b*c*x^3 + b^2*x - 2*a*c*x)/((c*x^4 + b*x^2 + a)*(a*b^2 - 4*a^2*c)) - 
1/16*(2*a^2*b^7*c^2 - 40*a^3*b^5*c^3 + 224*a^4*b^3*c^4 - 384*a^5*b*c^5 - s 
qrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^7 + 20*sqrt 
(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^5*c + 2*sqrt(2 
)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^6*c - 112*sqrt(2 
)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^2 - 32*sqrt( 
2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^4*c^2 - sqrt(2) 
*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^5*c^2 + 192*sqrt( 
2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^5*b*c^3 + 96*sqrt(2 
)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^2*c^3 + 16*sqrt( 
2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^3*c^3 - 48*sqrt 
(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b*c^4 - 2*(b^2 - 
 4*a*c)*a^2*b^5*c^2 + 32*(b^2 - 4*a*c)*a^3*b^3*c^3 - 96*(b^2 - 4*a*c)*a^4* 
b*c^4 + (2*b^3*c^2 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt 
(b^2 - 4*a*c)*c)*b^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4 
*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)* 
c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c^2 
 - 2*(b^2 - 4*a*c)*b*c^2)*(a*b^2 - 4*a^2*c)^2 - 2*(sqrt(2)*sqrt(b*c + sqrt 
(b^2 - 4*a*c)*c)*a*b^6 - 14*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^ 
4*c - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^5*c - 2*a*b^6*c + 6...
 

Mupad [B] (verification not implemented)

Time = 23.58 (sec) , antiderivative size = 6404, normalized size of antiderivative = 25.41 \[ \int \frac {1}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \] Input:

int(1/(a + b*x^2 + c*x^4)^2,x)
 

Output:

((x*(2*a*c - b^2))/(2*a*(4*a*c - b^2)) - (b*c*x^3)/(2*a*(4*a*c - b^2)))/(a 
 + b*x^2 + c*x^4) + atan(((((6144*a^5*c^6 + 16*a*b^8*c^2 - 288*a^2*b^6*c^3 
 + 1920*a^3*b^4*c^4 - 5632*a^4*b^2*c^5)/(8*(a^2*b^6 - 64*a^5*c^3 - 12*a^3* 
b^4*c + 48*a^4*b^2*c^2)) - (x*(-(b^11 + b^2*(-(4*a*c - b^2)^9)^(1/2) - 384 
0*a^5*b*c^5 + 288*a^2*b^7*c^2 - 1504*a^3*b^5*c^3 + 3840*a^4*b^3*c^4 - 27*a 
*b^9*c - 9*a*c*(-(4*a*c - b^2)^9)^(1/2))/(32*(a^3*b^12 + 4096*a^9*c^6 - 24 
*a^4*b^10*c + 240*a^5*b^8*c^2 - 1280*a^6*b^6*c^3 + 3840*a^7*b^4*c^4 - 6144 
*a^8*b^2*c^5)))^(1/2)*(1024*a^5*b*c^5 - 16*a^2*b^7*c^2 + 192*a^3*b^5*c^3 - 
 768*a^4*b^3*c^4))/(2*(a^2*b^4 + 16*a^4*c^2 - 8*a^3*b^2*c)))*(-(b^11 + b^2 
*(-(4*a*c - b^2)^9)^(1/2) - 3840*a^5*b*c^5 + 288*a^2*b^7*c^2 - 1504*a^3*b^ 
5*c^3 + 3840*a^4*b^3*c^4 - 27*a*b^9*c - 9*a*c*(-(4*a*c - b^2)^9)^(1/2))/(3 
2*(a^3*b^12 + 4096*a^9*c^6 - 24*a^4*b^10*c + 240*a^5*b^8*c^2 - 1280*a^6*b^ 
6*c^3 + 3840*a^7*b^4*c^4 - 6144*a^8*b^2*c^5)))^(1/2) + (x*(72*a^2*c^5 + b^ 
4*c^3 - 14*a*b^2*c^4))/(2*(a^2*b^4 + 16*a^4*c^2 - 8*a^3*b^2*c)))*(-(b^11 + 
 b^2*(-(4*a*c - b^2)^9)^(1/2) - 3840*a^5*b*c^5 + 288*a^2*b^7*c^2 - 1504*a^ 
3*b^5*c^3 + 3840*a^4*b^3*c^4 - 27*a*b^9*c - 9*a*c*(-(4*a*c - b^2)^9)^(1/2) 
)/(32*(a^3*b^12 + 4096*a^9*c^6 - 24*a^4*b^10*c + 240*a^5*b^8*c^2 - 1280*a^ 
6*b^6*c^3 + 3840*a^7*b^4*c^4 - 6144*a^8*b^2*c^5)))^(1/2)*1i - (((6144*a^5* 
c^6 + 16*a*b^8*c^2 - 288*a^2*b^6*c^3 + 1920*a^3*b^4*c^4 - 5632*a^4*b^2*c^5 
)/(8*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)) + (x*(-(b^...
 

Reduce [B] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 2409, normalized size of antiderivative = 9.56 \[ \int \frac {1}{\left (a+b x^2+c x^4\right )^2} \, dx =\text {Too large to display} \] Input:

int(1/(c*x^4+b*x^2+a)^2,x)
 

Output:

(16*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) 
- 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**2*b*c - 2*sqrt(a)*sqrt(2*sq 
rt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2 
*sqrt(c)*sqrt(a) + b))*a*b**3 + 16*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*ata 
n((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b)) 
*a*b**2*c*x**2 + 16*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt( 
c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b*c**2*x**4 
- 2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) 
- 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b**4*x**2 - 2*sqrt(a)*sqrt(2*s 
qrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt( 
2*sqrt(c)*sqrt(a) + b))*b**3*c*x**4 - 24*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + 
b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) 
 + b))*a**3*c + 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c) 
*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**2*b**2 - 24*s 
qrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*s 
qrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**2*b*c*x**2 - 24*sqrt(c)*sqrt(2*s 
qrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt( 
2*sqrt(c)*sqrt(a) + b))*a**2*c**2*x**4 + 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) 
+ b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt( 
a) + b))*a*b**3*x**2 + 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt...