\(\int \frac {e^{2 \text {arctanh}(a x)} (c-a^2 c x^2)^{5/2}}{x} \, dx\) [1139]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 136 \[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{5/2}}{x} \, dx=\frac {1}{4} c^2 (4+3 a x) \sqrt {c-a^2 c x^2}+\frac {1}{6} c (2+3 a x) \left (c-a^2 c x^2\right )^{3/2}-\frac {1}{5} \left (c-a^2 c x^2\right )^{5/2}+\frac {3}{4} c^{5/2} \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )-c^{5/2} \text {arctanh}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right ) \] Output:

1/4*c^2*(3*a*x+4)*(-a^2*c*x^2+c)^(1/2)+1/6*c*(3*a*x+2)*(-a^2*c*x^2+c)^(3/2 
)-1/5*(-a^2*c*x^2+c)^(5/2)+3/4*c^(5/2)*arctan(a*c^(1/2)*x/(-a^2*c*x^2+c)^( 
1/2))-c^(5/2)*arctanh((-a^2*c*x^2+c)^(1/2)/c^(1/2))
 

Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.00 \[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{5/2}}{x} \, dx=-\frac {1}{60} c^2 \sqrt {c-a^2 c x^2} \left (-68-75 a x-4 a^2 x^2+30 a^3 x^3+12 a^4 x^4\right )-\frac {3}{4} c^{5/2} \arctan \left (\frac {a x \sqrt {c-a^2 c x^2}}{\sqrt {c} \left (-1+a^2 x^2\right )}\right )+c^{5/2} \log (x)-c^{5/2} \log \left (c+\sqrt {c} \sqrt {c-a^2 c x^2}\right ) \] Input:

Integrate[(E^(2*ArcTanh[a*x])*(c - a^2*c*x^2)^(5/2))/x,x]
 

Output:

-1/60*(c^2*Sqrt[c - a^2*c*x^2]*(-68 - 75*a*x - 4*a^2*x^2 + 30*a^3*x^3 + 12 
*a^4*x^4)) - (3*c^(5/2)*ArcTan[(a*x*Sqrt[c - a^2*c*x^2])/(Sqrt[c]*(-1 + a^ 
2*x^2))])/4 + c^(5/2)*Log[x] - c^(5/2)*Log[c + Sqrt[c]*Sqrt[c - a^2*c*x^2] 
]
 

Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.08, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.444, Rules used = {6701, 541, 27, 535, 27, 535, 538, 224, 216, 243, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{5/2}}{x} \, dx\)

\(\Big \downarrow \) 6701

\(\displaystyle c \int \frac {(a x+1)^2 \left (c-a^2 c x^2\right )^{3/2}}{x}dx\)

\(\Big \downarrow \) 541

\(\displaystyle c \left (-\frac {\int -\frac {5 a^2 c (2 a x+1) \left (c-a^2 c x^2\right )^{3/2}}{x}dx}{5 a^2 c}-\frac {\left (c-a^2 c x^2\right )^{5/2}}{5 c}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle c \left (\int \frac {(2 a x+1) \left (c-a^2 c x^2\right )^{3/2}}{x}dx-\frac {\left (c-a^2 c x^2\right )^{5/2}}{5 c}\right )\)

\(\Big \downarrow \) 535

\(\displaystyle c \left (\frac {1}{4} c \int \frac {2 (3 a x+2) \sqrt {c-a^2 c x^2}}{x}dx-\frac {\left (c-a^2 c x^2\right )^{5/2}}{5 c}+\frac {1}{6} (3 a x+2) \left (c-a^2 c x^2\right )^{3/2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle c \left (\frac {1}{2} c \int \frac {(3 a x+2) \sqrt {c-a^2 c x^2}}{x}dx-\frac {\left (c-a^2 c x^2\right )^{5/2}}{5 c}+\frac {1}{6} (3 a x+2) \left (c-a^2 c x^2\right )^{3/2}\right )\)

\(\Big \downarrow \) 535

\(\displaystyle c \left (\frac {1}{2} c \left (\frac {1}{2} c \int \frac {3 a x+4}{x \sqrt {c-a^2 c x^2}}dx+\frac {1}{2} (3 a x+4) \sqrt {c-a^2 c x^2}\right )-\frac {\left (c-a^2 c x^2\right )^{5/2}}{5 c}+\frac {1}{6} (3 a x+2) \left (c-a^2 c x^2\right )^{3/2}\right )\)

\(\Big \downarrow \) 538

\(\displaystyle c \left (\frac {1}{2} c \left (\frac {1}{2} c \left (3 a \int \frac {1}{\sqrt {c-a^2 c x^2}}dx+4 \int \frac {1}{x \sqrt {c-a^2 c x^2}}dx\right )+\frac {1}{2} (3 a x+4) \sqrt {c-a^2 c x^2}\right )-\frac {\left (c-a^2 c x^2\right )^{5/2}}{5 c}+\frac {1}{6} (3 a x+2) \left (c-a^2 c x^2\right )^{3/2}\right )\)

\(\Big \downarrow \) 224

\(\displaystyle c \left (\frac {1}{2} c \left (\frac {1}{2} c \left (4 \int \frac {1}{x \sqrt {c-a^2 c x^2}}dx+3 a \int \frac {1}{\frac {a^2 c x^2}{c-a^2 c x^2}+1}d\frac {x}{\sqrt {c-a^2 c x^2}}\right )+\frac {1}{2} (3 a x+4) \sqrt {c-a^2 c x^2}\right )-\frac {\left (c-a^2 c x^2\right )^{5/2}}{5 c}+\frac {1}{6} (3 a x+2) \left (c-a^2 c x^2\right )^{3/2}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle c \left (\frac {1}{2} c \left (\frac {1}{2} c \left (4 \int \frac {1}{x \sqrt {c-a^2 c x^2}}dx+\frac {3 \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )}{\sqrt {c}}\right )+\frac {1}{2} (3 a x+4) \sqrt {c-a^2 c x^2}\right )-\frac {\left (c-a^2 c x^2\right )^{5/2}}{5 c}+\frac {1}{6} (3 a x+2) \left (c-a^2 c x^2\right )^{3/2}\right )\)

\(\Big \downarrow \) 243

\(\displaystyle c \left (\frac {1}{2} c \left (\frac {1}{2} c \left (2 \int \frac {1}{x^2 \sqrt {c-a^2 c x^2}}dx^2+\frac {3 \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )}{\sqrt {c}}\right )+\frac {1}{2} (3 a x+4) \sqrt {c-a^2 c x^2}\right )-\frac {\left (c-a^2 c x^2\right )^{5/2}}{5 c}+\frac {1}{6} (3 a x+2) \left (c-a^2 c x^2\right )^{3/2}\right )\)

\(\Big \downarrow \) 73

\(\displaystyle c \left (\frac {1}{2} c \left (\frac {1}{2} c \left (\frac {3 \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )}{\sqrt {c}}-\frac {4 \int \frac {1}{\frac {1}{a^2}-\frac {x^4}{a^2 c}}d\sqrt {c-a^2 c x^2}}{a^2 c}\right )+\frac {1}{2} (3 a x+4) \sqrt {c-a^2 c x^2}\right )-\frac {\left (c-a^2 c x^2\right )^{5/2}}{5 c}+\frac {1}{6} (3 a x+2) \left (c-a^2 c x^2\right )^{3/2}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle c \left (\frac {1}{2} c \left (\frac {1}{2} c \left (\frac {3 \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )}{\sqrt {c}}-\frac {4 \text {arctanh}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right )}{\sqrt {c}}\right )+\frac {1}{2} (3 a x+4) \sqrt {c-a^2 c x^2}\right )-\frac {\left (c-a^2 c x^2\right )^{5/2}}{5 c}+\frac {1}{6} (3 a x+2) \left (c-a^2 c x^2\right )^{3/2}\right )\)

Input:

Int[(E^(2*ArcTanh[a*x])*(c - a^2*c*x^2)^(5/2))/x,x]
 

Output:

c*(((2 + 3*a*x)*(c - a^2*c*x^2)^(3/2))/6 - (c - a^2*c*x^2)^(5/2)/(5*c) + ( 
c*(((4 + 3*a*x)*Sqrt[c - a^2*c*x^2])/2 + (c*((3*ArcTan[(a*Sqrt[c]*x)/Sqrt[ 
c - a^2*c*x^2]])/Sqrt[c] - (4*ArcTanh[Sqrt[c - a^2*c*x^2]/Sqrt[c]])/Sqrt[c 
]))/2))/2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 535
Int[(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_))/(x_), x_Symbol] :> Sim 
p[(c*(2*p + 1) + 2*d*p*x)*((a + b*x^2)^p/(2*p*(2*p + 1))), x] + Simp[a/(2*p 
 + 1)   Int[(c*(2*p + 1) + 2*d*p*x)*((a + b*x^2)^(p - 1)/x), x], x] /; Free 
Q[{a, b, c, d}, x] && GtQ[p, 0] && IntegerQ[2*p]
 

rule 538
Int[((c_) + (d_.)*(x_))/((x_)*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp 
[c   Int[1/(x*Sqrt[a + b*x^2]), x], x] + Simp[d   Int[1/Sqrt[a + b*x^2], x] 
, x] /; FreeQ[{a, b, c, d}, x]
 

rule 541
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbo 
l] :> Simp[d^n*x^(m + n - 1)*((a + b*x^2)^(p + 1)/(b*(m + n + 2*p + 1))), x 
] + Simp[1/(b*(m + n + 2*p + 1))   Int[x^m*(a + b*x^2)^p*ExpandToSum[b*(m + 
 n + 2*p + 1)*(c + d*x)^n - b*d^n*(m + n + 2*p + 1)*x^n - a*d^n*(m + n - 1) 
*x^(n - 2), x], x], x] /; FreeQ[{a, b, c, d, m, p}, x] && IGtQ[n, 1] && IGt 
Q[m, -2] && GtQ[p, -1] && IntegerQ[2*p]
 

rule 6701
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_ 
Symbol] :> Simp[c^(n/2)   Int[x^m*(c + d*x^2)^(p - n/2)*(1 + a*x)^n, x], x] 
 /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ 
[c, 0]) && IGtQ[n/2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(281\) vs. \(2(110)=220\).

Time = 0.17 (sec) , antiderivative size = 282, normalized size of antiderivative = 2.07

method result size
default \(\frac {\left (-a^{2} c \,x^{2}+c \right )^{\frac {5}{2}}}{5}+c \left (\frac {\left (-a^{2} c \,x^{2}+c \right )^{\frac {3}{2}}}{3}+c \left (\sqrt {-a^{2} c \,x^{2}+c}-\sqrt {c}\, \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {-a^{2} c \,x^{2}+c}}{x}\right )\right )\right )-\frac {2 \left (-\left (x -\frac {1}{a}\right )^{2} a^{2} c -2 \left (x -\frac {1}{a}\right ) a c \right )^{\frac {5}{2}}}{5}+2 a c \left (-\frac {\left (-2 \left (x -\frac {1}{a}\right ) a^{2} c -2 a c \right ) \left (-\left (x -\frac {1}{a}\right )^{2} a^{2} c -2 \left (x -\frac {1}{a}\right ) a c \right )^{\frac {3}{2}}}{8 a^{2} c}+\frac {3 c \left (-\frac {\left (-2 \left (x -\frac {1}{a}\right ) a^{2} c -2 a c \right ) \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2} c -2 \left (x -\frac {1}{a}\right ) a c}}{4 a^{2} c}+\frac {c \arctan \left (\frac {\sqrt {a^{2} c}\, x}{\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2} c -2 \left (x -\frac {1}{a}\right ) a c}}\right )}{2 \sqrt {a^{2} c}}\right )}{4}\right )\) \(282\)

Input:

int((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(5/2)/x,x,method=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

1/5*(-a^2*c*x^2+c)^(5/2)+c*(1/3*(-a^2*c*x^2+c)^(3/2)+c*((-a^2*c*x^2+c)^(1/ 
2)-c^(1/2)*ln((2*c+2*c^(1/2)*(-a^2*c*x^2+c)^(1/2))/x)))-2/5*(-(x-1/a)^2*a^ 
2*c-2*(x-1/a)*a*c)^(5/2)+2*a*c*(-1/8*(-2*(x-1/a)*a^2*c-2*a*c)/a^2/c*(-(x-1 
/a)^2*a^2*c-2*(x-1/a)*a*c)^(3/2)+3/4*c*(-1/4*(-2*(x-1/a)*a^2*c-2*a*c)/a^2/ 
c*(-(x-1/a)^2*a^2*c-2*(x-1/a)*a*c)^(1/2)+1/2*c/(a^2*c)^(1/2)*arctan((a^2*c 
)^(1/2)*x/(-(x-1/a)^2*a^2*c-2*(x-1/a)*a*c)^(1/2))))
 

Fricas [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 283, normalized size of antiderivative = 2.08 \[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{5/2}}{x} \, dx=\left [-\frac {3}{4} \, c^{\frac {5}{2}} \arctan \left (\frac {\sqrt {-a^{2} c x^{2} + c} a \sqrt {c} x}{a^{2} c x^{2} - c}\right ) + \frac {1}{2} \, c^{\frac {5}{2}} \log \left (-\frac {a^{2} c x^{2} + 2 \, \sqrt {-a^{2} c x^{2} + c} \sqrt {c} - 2 \, c}{x^{2}}\right ) - \frac {1}{60} \, {\left (12 \, a^{4} c^{2} x^{4} + 30 \, a^{3} c^{2} x^{3} - 4 \, a^{2} c^{2} x^{2} - 75 \, a c^{2} x - 68 \, c^{2}\right )} \sqrt {-a^{2} c x^{2} + c}, \sqrt {-c} c^{2} \arctan \left (\frac {\sqrt {-a^{2} c x^{2} + c} \sqrt {-c}}{c}\right ) + \frac {3}{8} \, \sqrt {-c} c^{2} \log \left (2 \, a^{2} c x^{2} + 2 \, \sqrt {-a^{2} c x^{2} + c} a \sqrt {-c} x - c\right ) - \frac {1}{60} \, {\left (12 \, a^{4} c^{2} x^{4} + 30 \, a^{3} c^{2} x^{3} - 4 \, a^{2} c^{2} x^{2} - 75 \, a c^{2} x - 68 \, c^{2}\right )} \sqrt {-a^{2} c x^{2} + c}\right ] \] Input:

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(5/2)/x,x, algorithm="fric 
as")
 

Output:

[-3/4*c^(5/2)*arctan(sqrt(-a^2*c*x^2 + c)*a*sqrt(c)*x/(a^2*c*x^2 - c)) + 1 
/2*c^(5/2)*log(-(a^2*c*x^2 + 2*sqrt(-a^2*c*x^2 + c)*sqrt(c) - 2*c)/x^2) - 
1/60*(12*a^4*c^2*x^4 + 30*a^3*c^2*x^3 - 4*a^2*c^2*x^2 - 75*a*c^2*x - 68*c^ 
2)*sqrt(-a^2*c*x^2 + c), sqrt(-c)*c^2*arctan(sqrt(-a^2*c*x^2 + c)*sqrt(-c) 
/c) + 3/8*sqrt(-c)*c^2*log(2*a^2*c*x^2 + 2*sqrt(-a^2*c*x^2 + c)*a*sqrt(-c) 
*x - c) - 1/60*(12*a^4*c^2*x^4 + 30*a^3*c^2*x^3 - 4*a^2*c^2*x^2 - 75*a*c^2 
*x - 68*c^2)*sqrt(-a^2*c*x^2 + c)]
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 9.05 (sec) , antiderivative size = 435, normalized size of antiderivative = 3.20 \[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{5/2}}{x} \, dx=- a^{4} c^{2} \left (\begin {cases} \frac {x^{4} \sqrt {- a^{2} c x^{2} + c}}{5} - \frac {x^{2} \sqrt {- a^{2} c x^{2} + c}}{15 a^{2}} - \frac {2 \sqrt {- a^{2} c x^{2} + c}}{15 a^{4}} & \text {for}\: a^{2} c \neq 0 \\\frac {\sqrt {c} x^{4}}{4} & \text {otherwise} \end {cases}\right ) - 2 a^{3} c^{2} \left (\begin {cases} \frac {x^{3} \sqrt {- a^{2} c x^{2} + c}}{4} + \frac {c \left (\begin {cases} \frac {\log {\left (- 2 a^{2} c x + 2 \sqrt {- a^{2} c} \sqrt {- a^{2} c x^{2} + c} \right )}}{\sqrt {- a^{2} c}} & \text {for}\: c \neq 0 \\\frac {x \log {\left (x \right )}}{\sqrt {- a^{2} c x^{2}}} & \text {otherwise} \end {cases}\right )}{8 a^{2}} - \frac {x \sqrt {- a^{2} c x^{2} + c}}{8 a^{2}} & \text {for}\: a^{2} c \neq 0 \\\frac {\sqrt {c} x^{3}}{3} & \text {otherwise} \end {cases}\right ) + 2 a c^{2} \left (\begin {cases} \frac {c \left (\begin {cases} \frac {\log {\left (- 2 a^{2} c x + 2 \sqrt {- a^{2} c} \sqrt {- a^{2} c x^{2} + c} \right )}}{\sqrt {- a^{2} c}} & \text {for}\: c \neq 0 \\\frac {x \log {\left (x \right )}}{\sqrt {- a^{2} c x^{2}}} & \text {otherwise} \end {cases}\right )}{2} + \frac {x \sqrt {- a^{2} c x^{2} + c}}{2} & \text {for}\: a^{2} c \neq 0 \\\sqrt {c} x & \text {otherwise} \end {cases}\right ) + c^{2} \left (\begin {cases} i \sqrt {c} \sqrt {a^{2} x^{2} - 1} - \sqrt {c} \log {\left (a x \right )} + \frac {\sqrt {c} \log {\left (a^{2} x^{2} \right )}}{2} + i \sqrt {c} \operatorname {asin}{\left (\frac {1}{a x} \right )} & \text {for}\: \left |{a^{2} x^{2}}\right | > 1 \\\sqrt {c} \sqrt {- a^{2} x^{2} + 1} + \frac {\sqrt {c} \log {\left (a^{2} x^{2} \right )}}{2} - \sqrt {c} \log {\left (\sqrt {- a^{2} x^{2} + 1} + 1 \right )} & \text {otherwise} \end {cases}\right ) \] Input:

integrate((a*x+1)**2/(-a**2*x**2+1)*(-a**2*c*x**2+c)**(5/2)/x,x)
 

Output:

-a**4*c**2*Piecewise((x**4*sqrt(-a**2*c*x**2 + c)/5 - x**2*sqrt(-a**2*c*x* 
*2 + c)/(15*a**2) - 2*sqrt(-a**2*c*x**2 + c)/(15*a**4), Ne(a**2*c, 0)), (s 
qrt(c)*x**4/4, True)) - 2*a**3*c**2*Piecewise((x**3*sqrt(-a**2*c*x**2 + c) 
/4 + c*Piecewise((log(-2*a**2*c*x + 2*sqrt(-a**2*c)*sqrt(-a**2*c*x**2 + c) 
)/sqrt(-a**2*c), Ne(c, 0)), (x*log(x)/sqrt(-a**2*c*x**2), True))/(8*a**2) 
- x*sqrt(-a**2*c*x**2 + c)/(8*a**2), Ne(a**2*c, 0)), (sqrt(c)*x**3/3, True 
)) + 2*a*c**2*Piecewise((c*Piecewise((log(-2*a**2*c*x + 2*sqrt(-a**2*c)*sq 
rt(-a**2*c*x**2 + c))/sqrt(-a**2*c), Ne(c, 0)), (x*log(x)/sqrt(-a**2*c*x** 
2), True))/2 + x*sqrt(-a**2*c*x**2 + c)/2, Ne(a**2*c, 0)), (sqrt(c)*x, Tru 
e)) + c**2*Piecewise((I*sqrt(c)*sqrt(a**2*x**2 - 1) - sqrt(c)*log(a*x) + s 
qrt(c)*log(a**2*x**2)/2 + I*sqrt(c)*asin(1/(a*x)), Abs(a**2*x**2) > 1), (s 
qrt(c)*sqrt(-a**2*x**2 + 1) + sqrt(c)*log(a**2*x**2)/2 - sqrt(c)*log(sqrt( 
-a**2*x**2 + 1) + 1), True))
 

Maxima [F]

\[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{5/2}}{x} \, dx=\int { -\frac {{\left (-a^{2} c x^{2} + c\right )}^{\frac {5}{2}} {\left (a x + 1\right )}^{2}}{{\left (a^{2} x^{2} - 1\right )} x} \,d x } \] Input:

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(5/2)/x,x, algorithm="maxi 
ma")
 

Output:

-integrate((-a^2*c*x^2 + c)^(5/2)*(a*x + 1)^2/((a^2*x^2 - 1)*x), x)
 

Giac [A] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.10 \[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{5/2}}{x} \, dx=\frac {2 \, c^{3} \arctan \left (-\frac {\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}}{\sqrt {-c}}\right )}{\sqrt {-c}} + \frac {3 \, a \sqrt {-c} c^{2} \log \left ({\left | -\sqrt {-a^{2} c} x + \sqrt {-a^{2} c x^{2} + c} \right |}\right )}{4 \, {\left | a \right |}} + \frac {1}{60} \, \sqrt {-a^{2} c x^{2} + c} {\left (68 \, c^{2} + {\left (75 \, a c^{2} + 2 \, {\left (2 \, a^{2} c^{2} - 3 \, {\left (2 \, a^{4} c^{2} x + 5 \, a^{3} c^{2}\right )} x\right )} x\right )} x\right )} \] Input:

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(5/2)/x,x, algorithm="giac 
")
 

Output:

2*c^3*arctan(-(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))/sqrt(-c))/sqrt(-c) + 
 3/4*a*sqrt(-c)*c^2*log(abs(-sqrt(-a^2*c)*x + sqrt(-a^2*c*x^2 + c)))/abs(a 
) + 1/60*sqrt(-a^2*c*x^2 + c)*(68*c^2 + (75*a*c^2 + 2*(2*a^2*c^2 - 3*(2*a^ 
4*c^2*x + 5*a^3*c^2)*x)*x)*x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{5/2}}{x} \, dx=-\int \frac {{\left (c-a^2\,c\,x^2\right )}^{5/2}\,{\left (a\,x+1\right )}^2}{x\,\left (a^2\,x^2-1\right )} \,d x \] Input:

int(-((c - a^2*c*x^2)^(5/2)*(a*x + 1)^2)/(x*(a^2*x^2 - 1)),x)
 

Output:

-int(((c - a^2*c*x^2)^(5/2)*(a*x + 1)^2)/(x*(a^2*x^2 - 1)), x)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.81 \[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{5/2}}{x} \, dx=\frac {\sqrt {c}\, c^{2} \left (45 \mathit {asin} \left (a x \right )-12 \sqrt {-a^{2} x^{2}+1}\, a^{4} x^{4}-30 \sqrt {-a^{2} x^{2}+1}\, a^{3} x^{3}+4 \sqrt {-a^{2} x^{2}+1}\, a^{2} x^{2}+75 \sqrt {-a^{2} x^{2}+1}\, a x +68 \sqrt {-a^{2} x^{2}+1}+60 \,\mathrm {log}\left (\tan \left (\frac {\mathit {asin} \left (a x \right )}{2}\right )\right )-68\right )}{60} \] Input:

int((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(5/2)/x,x)
 

Output:

(sqrt(c)*c**2*(45*asin(a*x) - 12*sqrt( - a**2*x**2 + 1)*a**4*x**4 - 30*sqr 
t( - a**2*x**2 + 1)*a**3*x**3 + 4*sqrt( - a**2*x**2 + 1)*a**2*x**2 + 75*sq 
rt( - a**2*x**2 + 1)*a*x + 68*sqrt( - a**2*x**2 + 1) + 60*log(tan(asin(a*x 
)/2)) - 68))/60