\(\int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^3} \, dx\) [126]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 12, antiderivative size = 202 \[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^3} \, dx=\frac {1}{6} \left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{1+\frac {1}{x}}+\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (1+\frac {1}{x}\right )^{7/6}-\frac {1}{18} \arctan \left (\sqrt {3}-\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{1+\frac {1}{x}}}\right )+\frac {1}{18} \arctan \left (\sqrt {3}+\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{1+\frac {1}{x}}}\right )+\frac {1}{9} \arctan \left (\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{1+\frac {1}{x}}}\right )-\frac {\text {arctanh}\left (\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\left (1+\frac {\sqrt [3]{1-\frac {1}{x}}}{\sqrt [3]{1+\frac {1}{x}}}\right ) \sqrt [6]{1+\frac {1}{x}}}\right )}{6 \sqrt {3}} \] Output:

1/6*(1-1/x)^(5/6)*(1+1/x)^(1/6)+1/2*(1-1/x)^(5/6)*(1+1/x)^(7/6)+1/18*arcta 
n(-3^(1/2)+2*(1-1/x)^(1/6)/(1+1/x)^(1/6))+1/18*arctan(3^(1/2)+2*(1-1/x)^(1 
/6)/(1+1/x)^(1/6))+1/9*arctan((1-1/x)^(1/6)/(1+1/x)^(1/6))-1/18*3^(1/2)*ar 
ctanh(3^(1/2)*(1-1/x)^(1/6)/(1+(1-1/x)^(1/3)/(1+1/x)^(1/3))/(1+1/x)^(1/6))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.93 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.61 \[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^3} \, dx=\frac {1}{54} \left (\frac {18 e^{\frac {1}{3} \coth ^{-1}(x)} \left (1+7 e^{2 \coth ^{-1}(x)}\right )}{\left (1+e^{2 \coth ^{-1}(x)}\right )^2}-6 \arctan \left (e^{\frac {1}{3} \coth ^{-1}(x)}\right )+\text {RootSum}\left [1-\text {$\#$1}^2+\text {$\#$1}^4\&,\frac {2 \coth ^{-1}(x)-6 \log \left (e^{\frac {1}{3} \coth ^{-1}(x)}-\text {$\#$1}\right )-\coth ^{-1}(x) \text {$\#$1}^2+3 \log \left (e^{\frac {1}{3} \coth ^{-1}(x)}-\text {$\#$1}\right ) \text {$\#$1}^2}{-\text {$\#$1}+2 \text {$\#$1}^3}\&\right ]\right ) \] Input:

Integrate[E^(ArcCoth[x]/3)/x^3,x]
 

Output:

((18*E^(ArcCoth[x]/3)*(1 + 7*E^(2*ArcCoth[x])))/(1 + E^(2*ArcCoth[x]))^2 - 
 6*ArcTan[E^(ArcCoth[x]/3)] + RootSum[1 - #1^2 + #1^4 & , (2*ArcCoth[x] - 
6*Log[E^(ArcCoth[x]/3) - #1] - ArcCoth[x]*#1^2 + 3*Log[E^(ArcCoth[x]/3) - 
#1]*#1^2)/(-#1 + 2*#1^3) & ])/54
 

Rubi [A] (warning: unable to verify)

Time = 0.67 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.20, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.083, Rules used = {6721, 90, 60, 73, 854, 824, 27, 216, 1142, 25, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^3} \, dx\)

\(\Big \downarrow \) 6721

\(\displaystyle -\int \frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{1-\frac {1}{x}} x}d\frac {1}{x}\)

\(\Big \downarrow \) 90

\(\displaystyle \frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}-\frac {1}{6} \int \frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{1-\frac {1}{x}}}d\frac {1}{x}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{6} \left (\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}-\frac {1}{3} \int \frac {1}{\sqrt [6]{1-\frac {1}{x}} \left (1+\frac {1}{x}\right )^{5/6}}d\frac {1}{x}\right )+\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{6} \left (2 \int \frac {1}{\left (2-\frac {1}{x^6}\right )^{5/6} x^4}d\sqrt [6]{1-\frac {1}{x}}+\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )+\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}\)

\(\Big \downarrow \) 854

\(\displaystyle \frac {1}{6} \left (2 \int \frac {1}{\left (1+\frac {1}{x^6}\right ) x^4}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )+\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}\)

\(\Big \downarrow \) 824

\(\displaystyle \frac {1}{6} \left (2 \left (\frac {1}{3} \int \frac {1}{1+\frac {1}{x^2}}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{3} \int -\frac {1-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}}{2 \left (-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1\right )}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{3} \int -\frac {\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+1}{2 \left (\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1\right )}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )+\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{6} \left (2 \left (\frac {1}{3} \int \frac {1}{1+\frac {1}{x^2}}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\frac {1}{6} \int \frac {1-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\frac {1}{6} \int \frac {\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+1}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )+\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{6} \left (2 \left (-\frac {1}{6} \int \frac {1-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\frac {1}{6} \int \frac {\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+1}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{3} \arctan \left (\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )\right )+\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )+\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {1}{6} \left (2 \left (\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{2} \sqrt {3} \int -\frac {\sqrt {3}-\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\frac {1}{2} \sqrt {3} \int \frac {\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\sqrt {3}}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{3} \arctan \left (\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )\right )+\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )+\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{6} \left (2 \left (\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}-\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\frac {1}{2} \sqrt {3} \int \frac {\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\sqrt {3}}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{3} \arctan \left (\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )\right )+\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )+\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {1}{6} \left (2 \left (\frac {1}{6} \left (-\int \frac {1}{-1-\frac {1}{x^2}}d\left (\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\sqrt {3}\right )-\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}-\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{6} \left (-\int \frac {1}{-1-\frac {1}{x^2}}d\left (\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\sqrt {3}\right )-\frac {1}{2} \sqrt {3} \int \frac {\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\sqrt {3}}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{3} \arctan \left (\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )\right )+\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )+\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{6} \left (2 \left (\frac {1}{6} \left (-\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}-\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\arctan \left (\sqrt {3}-\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )\right )+\frac {1}{6} \left (\arctan \left (\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\sqrt {3}\right )-\frac {1}{2} \sqrt {3} \int \frac {\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\sqrt {3}}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{3} \arctan \left (\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )\right )+\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )+\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {1}{6} \left (2 \left (\frac {1}{3} \arctan \left (\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{6} \left (\frac {1}{2} \sqrt {3} \log \left (-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1\right )-\arctan \left (\sqrt {3}-\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )\right )+\frac {1}{6} \left (\arctan \left (\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\sqrt {3}\right )-\frac {1}{2} \sqrt {3} \log \left (\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1\right )\right )\right )+\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )+\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}\)

Input:

Int[E^(ArcCoth[x]/3)/x^3,x]
 

Output:

((1 - x^(-1))^(5/6)*(1 + x^(-1))^(7/6))/2 + ((1 - x^(-1))^(5/6)*(1 + x^(-1 
))^(1/6) + 2*(ArcTan[(1 - x^(-1))^(1/6)/(2 - x^(-6))^(1/6)]/3 + (-ArcTan[S 
qrt[3] - (2*(1 - x^(-1))^(1/6))/(2 - x^(-6))^(1/6)] + (Sqrt[3]*Log[1 - (Sq 
rt[3]*(1 - x^(-1))^(1/6))/(2 - x^(-6))^(1/6) + x^(-2)])/2)/6 + (ArcTan[Sqr 
t[3] + (2*(1 - x^(-1))^(1/6))/(2 - x^(-6))^(1/6)] - (Sqrt[3]*Log[1 + (Sqrt 
[3]*(1 - x^(-1))^(1/6))/(2 - x^(-6))^(1/6) + x^(-2)])/2)/6))/6
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 824
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator 
[Rt[a/b, n]], s = Denominator[Rt[a/b, n]], k, u}, Simp[u = Int[(r*Cos[(2*k 
- 1)*m*(Pi/n)] - s*Cos[(2*k - 1)*(m + 1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[(2*k - 
 1)*(Pi/n)]*x + s^2*x^2), x] + Int[(r*Cos[(2*k - 1)*m*(Pi/n)] + s*Cos[(2*k 
- 1)*(m + 1)*(Pi/n)]*x)/(r^2 + 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2*x^2), x] 
; 2*(-1)^(m/2)*(r^(m + 2)/(a*n*s^m))   Int[1/(r^2 + s^2*x^2), x] + 2*(r^(m 
+ 1)/(a*n*s^m))   Sum[u, {k, 1, (n - 2)/4}], x]] /; FreeQ[{a, b}, x] && IGt 
Q[(n - 2)/4, 0] && IGtQ[m, 0] && LtQ[m, n - 1] && PosQ[a/b]
 

rule 854
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + (m + 
 1)/n)   Subst[Int[x^m/(1 - b*x^n)^(p + (m + 1)/n + 1), x], x, x/(a + b*x^n 
)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, - 
2^(-1)] && IntegersQ[m, p + (m + 1)/n]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 6721
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x 
/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, n}, x] && 
!IntegerQ[n] && IntegerQ[m]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 11.20 (sec) , antiderivative size = 1502, normalized size of antiderivative = 7.44

method result size
trager \(\text {Expression too large to display}\) \(1502\)
risch \(\text {Expression too large to display}\) \(3480\)

Input:

int(1/((x-1)/(1+x))^(1/6)/x^3,x,method=_RETURNVERBOSE)
 

Output:

1/6*(1+x)*(3+4*x)/x^2*(-(1-x)/(1+x))^(5/6)-3/2*RootOf(81*_Z^4-9*_Z^2+1)^3* 
ln(-(27*RootOf(81*_Z^4-9*_Z^2+1)^3*(-(1-x)/(1+x))^(2/3)*x+27*RootOf(81*_Z^ 
4-9*_Z^2+1)^3*(-(1-x)/(1+x))^(2/3)+27*RootOf(81*_Z^4-9*_Z^2+1)^3*(-(1-x)/( 
1+x))^(1/3)*x-18*RootOf(81*_Z^4-9*_Z^2+1)^2*(-(1-x)/(1+x))^(1/2)*x+3*RootO 
f(81*_Z^4-9*_Z^2+1)*(-(1-x)/(1+x))^(2/3)*x-(-(1-x)/(1+x))^(5/6)*x+27*RootO 
f(81*_Z^4-9*_Z^2+1)^3*(-(1-x)/(1+x))^(1/3)-18*RootOf(81*_Z^4-9*_Z^2+1)^2*( 
-(1-x)/(1+x))^(1/2)+3*RootOf(81*_Z^4-9*_Z^2+1)*(-(1-x)/(1+x))^(2/3)-(-(1-x 
)/(1+x))^(5/6)-18*RootOf(81*_Z^4-9*_Z^2+1)^3*x+9*RootOf(81*_Z^4-9*_Z^2+1)^ 
2*(-(1-x)/(1+x))^(1/6)*x-6*RootOf(81*_Z^4-9*_Z^2+1)*(-(1-x)/(1+x))^(1/3)*x 
+2*(-(1-x)/(1+x))^(1/2)*x+9*RootOf(81*_Z^4-9*_Z^2+1)^2*(-(1-x)/(1+x))^(1/6 
)-6*RootOf(81*_Z^4-9*_Z^2+1)*(-(1-x)/(1+x))^(1/3)+2*(-(1-x)/(1+x))^(1/2)+R 
ootOf(81*_Z^4-9*_Z^2+1)*x)/x)+1/6*RootOf(81*_Z^4-9*_Z^2+1)*ln(-(27*RootOf( 
81*_Z^4-9*_Z^2+1)^3*(-(1-x)/(1+x))^(2/3)*x+27*RootOf(81*_Z^4-9*_Z^2+1)^3*( 
-(1-x)/(1+x))^(2/3)+27*RootOf(81*_Z^4-9*_Z^2+1)^3*(-(1-x)/(1+x))^(1/3)*x-1 
8*RootOf(81*_Z^4-9*_Z^2+1)^2*(-(1-x)/(1+x))^(1/2)*x+3*RootOf(81*_Z^4-9*_Z^ 
2+1)*(-(1-x)/(1+x))^(2/3)*x-(-(1-x)/(1+x))^(5/6)*x+27*RootOf(81*_Z^4-9*_Z^ 
2+1)^3*(-(1-x)/(1+x))^(1/3)-18*RootOf(81*_Z^4-9*_Z^2+1)^2*(-(1-x)/(1+x))^( 
1/2)+3*RootOf(81*_Z^4-9*_Z^2+1)*(-(1-x)/(1+x))^(2/3)-(-(1-x)/(1+x))^(5/6)- 
18*RootOf(81*_Z^4-9*_Z^2+1)^3*x+9*RootOf(81*_Z^4-9*_Z^2+1)^2*(-(1-x)/(1+x) 
)^(1/6)*x-6*RootOf(81*_Z^4-9*_Z^2+1)*(-(1-x)/(1+x))^(1/3)*x+2*(-(1-x)/(...
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 168, normalized size of antiderivative = 0.83 \[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^3} \, dx=-\frac {\sqrt {3} x^{2} \log \left (\sqrt {3} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right ) - \sqrt {3} x^{2} \log \left (-\sqrt {3} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right ) - 2 \, x^{2} \arctan \left (\sqrt {3} + 2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) - 2 \, x^{2} \arctan \left (-\sqrt {3} + 2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) - 4 \, x^{2} \arctan \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) - 6 \, {\left (4 \, x^{2} + 7 \, x + 3\right )} \left (\frac {x - 1}{x + 1}\right )^{\frac {5}{6}}}{36 \, x^{2}} \] Input:

integrate(1/((x-1)/(1+x))^(1/6)/x^3,x, algorithm="fricas")
 

Output:

-1/36*(sqrt(3)*x^2*log(sqrt(3)*((x - 1)/(x + 1))^(1/6) + ((x - 1)/(x + 1)) 
^(1/3) + 1) - sqrt(3)*x^2*log(-sqrt(3)*((x - 1)/(x + 1))^(1/6) + ((x - 1)/ 
(x + 1))^(1/3) + 1) - 2*x^2*arctan(sqrt(3) + 2*((x - 1)/(x + 1))^(1/6)) - 
2*x^2*arctan(-sqrt(3) + 2*((x - 1)/(x + 1))^(1/6)) - 4*x^2*arctan(((x - 1) 
/(x + 1))^(1/6)) - 6*(4*x^2 + 7*x + 3)*((x - 1)/(x + 1))^(5/6))/x^2
 

Sympy [F]

\[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^3} \, dx=\int \frac {1}{x^{3} \sqrt [6]{\frac {x - 1}{x + 1}}}\, dx \] Input:

integrate(1/((x-1)/(1+x))**(1/6)/x**3,x)
 

Output:

Integral(1/(x**3*((x - 1)/(x + 1))**(1/6)), x)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 178, normalized size of antiderivative = 0.88 \[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^3} \, dx=-\frac {1}{36} \, \sqrt {3} \log \left (\sqrt {3} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right ) + \frac {1}{36} \, \sqrt {3} \log \left (-\sqrt {3} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right ) + \frac {\left (\frac {x - 1}{x + 1}\right )^{\frac {11}{6}} + 7 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {5}{6}}}{3 \, {\left (\frac {2 \, {\left (x - 1\right )}}{x + 1} + \frac {{\left (x - 1\right )}^{2}}{{\left (x + 1\right )}^{2}} + 1\right )}} + \frac {1}{18} \, \arctan \left (\sqrt {3} + 2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) + \frac {1}{18} \, \arctan \left (-\sqrt {3} + 2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) + \frac {1}{9} \, \arctan \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) \] Input:

integrate(1/((x-1)/(1+x))^(1/6)/x^3,x, algorithm="maxima")
 

Output:

-1/36*sqrt(3)*log(sqrt(3)*((x - 1)/(x + 1))^(1/6) + ((x - 1)/(x + 1))^(1/3 
) + 1) + 1/36*sqrt(3)*log(-sqrt(3)*((x - 1)/(x + 1))^(1/6) + ((x - 1)/(x + 
 1))^(1/3) + 1) + 1/3*(((x - 1)/(x + 1))^(11/6) + 7*((x - 1)/(x + 1))^(5/6 
))/(2*(x - 1)/(x + 1) + (x - 1)^2/(x + 1)^2 + 1) + 1/18*arctan(sqrt(3) + 2 
*((x - 1)/(x + 1))^(1/6)) + 1/18*arctan(-sqrt(3) + 2*((x - 1)/(x + 1))^(1/ 
6)) + 1/9*arctan(((x - 1)/(x + 1))^(1/6))
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 175, normalized size of antiderivative = 0.87 \[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^3} \, dx=-\frac {1}{36} \, \sqrt {3} \log \left (\sqrt {3} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right ) + \frac {1}{36} \, \sqrt {3} \log \left (-\sqrt {3} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right ) + \frac {\frac {{\left (x - 1\right )} \left (\frac {x - 1}{x + 1}\right )^{\frac {5}{6}}}{x + 1} + 7 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {5}{6}}}{3 \, {\left (\frac {x - 1}{x + 1} + 1\right )}^{2}} + \frac {1}{18} \, \arctan \left (\sqrt {3} + 2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) + \frac {1}{18} \, \arctan \left (-\sqrt {3} + 2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) + \frac {1}{9} \, \arctan \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) \] Input:

integrate(1/((x-1)/(1+x))^(1/6)/x^3,x, algorithm="giac")
 

Output:

-1/36*sqrt(3)*log(sqrt(3)*((x - 1)/(x + 1))^(1/6) + ((x - 1)/(x + 1))^(1/3 
) + 1) + 1/36*sqrt(3)*log(-sqrt(3)*((x - 1)/(x + 1))^(1/6) + ((x - 1)/(x + 
 1))^(1/3) + 1) + 1/3*((x - 1)*((x - 1)/(x + 1))^(5/6)/(x + 1) + 7*((x - 1 
)/(x + 1))^(5/6))/((x - 1)/(x + 1) + 1)^2 + 1/18*arctan(sqrt(3) + 2*((x - 
1)/(x + 1))^(1/6)) + 1/18*arctan(-sqrt(3) + 2*((x - 1)/(x + 1))^(1/6)) + 1 
/9*arctan(((x - 1)/(x + 1))^(1/6))
 

Mupad [B] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.67 \[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^3} \, dx=\frac {\mathrm {atan}\left ({\left (\frac {x-1}{x+1}\right )}^{1/6}\right )}{9}+\frac {\frac {7\,{\left (\frac {x-1}{x+1}\right )}^{5/6}}{3}+\frac {{\left (\frac {x-1}{x+1}\right )}^{11/6}}{3}}{\frac {2\,\left (x-1\right )}{x+1}+\frac {{\left (x-1\right )}^2}{{\left (x+1\right )}^2}+1}-\mathrm {atan}\left (\frac {2\,{\left (\frac {x-1}{x+1}\right )}^{1/6}}{243\,\left (-\frac {1}{243}+\frac {\sqrt {3}\,1{}\mathrm {i}}{243}\right )}\right )\,\left (\frac {1}{18}+\frac {\sqrt {3}\,1{}\mathrm {i}}{18}\right )-\mathrm {atan}\left (\frac {2\,{\left (\frac {x-1}{x+1}\right )}^{1/6}}{243\,\left (\frac {1}{243}+\frac {\sqrt {3}\,1{}\mathrm {i}}{243}\right )}\right )\,\left (-\frac {1}{18}+\frac {\sqrt {3}\,1{}\mathrm {i}}{18}\right ) \] Input:

int(1/(x^3*((x - 1)/(x + 1))^(1/6)),x)
 

Output:

atan(((x - 1)/(x + 1))^(1/6))/9 + ((7*((x - 1)/(x + 1))^(5/6))/3 + ((x - 1 
)/(x + 1))^(11/6)/3)/((2*(x - 1))/(x + 1) + (x - 1)^2/(x + 1)^2 + 1) - ata 
n((2*((x - 1)/(x + 1))^(1/6))/(243*((3^(1/2)*1i)/243 - 1/243)))*((3^(1/2)* 
1i)/18 + 1/18) - atan((2*((x - 1)/(x + 1))^(1/6))/(243*((3^(1/2)*1i)/243 + 
 1/243)))*((3^(1/2)*1i)/18 - 1/18)
 

Reduce [B] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.32 \[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^3} \, dx=\frac {\left (x -1\right )^{\frac {5}{6}} \left (-\left (x +1\right )^{\frac {3}{2}} x^{2}+\left (x +1\right )^{\frac {3}{2}} x +\left (x +1\right )^{\frac {3}{2}}+18 \sqrt {x +1}\, \mathrm {log}\left (\left (x -1\right )^{\frac {1}{6}}\right ) x^{2}-3 \sqrt {x +1}\, \mathrm {log}\left (x \right ) x^{2}\right )}{2 \left (x +1\right )^{\frac {1}{3}} x^{2}} \] Input:

int(1/((x-1)/(1+x))^(1/6)/x^3,x)
 

Output:

((x - 1)**(5/6)*( - (x + 1)**(3/2)*x**2 + (x + 1)**(3/2)*x + (x + 1)**(3/2 
) + 18*sqrt(x + 1)*log((x - 1)**(1/6))*x**2 - 3*sqrt(x + 1)*log(x)*x**2))/ 
(2*(x + 1)**(1/3)*x**2)