\(\int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^4} \, dx\) [127]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [C] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 12, antiderivative size = 229 \[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^4} \, dx=\frac {19}{54} \left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{1+\frac {1}{x}}+\frac {1}{18} \left (1-\frac {1}{x}\right )^{5/6} \left (1+\frac {1}{x}\right )^{7/6}+\frac {\left (1-\frac {1}{x}\right )^{5/6} \left (1+\frac {1}{x}\right )^{7/6}}{3 x}-\frac {19}{162} \arctan \left (\sqrt {3}-\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{1+\frac {1}{x}}}\right )+\frac {19}{162} \arctan \left (\sqrt {3}+\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{1+\frac {1}{x}}}\right )+\frac {19}{81} \arctan \left (\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{1+\frac {1}{x}}}\right )-\frac {19 \text {arctanh}\left (\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\left (1+\frac {\sqrt [3]{1-\frac {1}{x}}}{\sqrt [3]{1+\frac {1}{x}}}\right ) \sqrt [6]{1+\frac {1}{x}}}\right )}{54 \sqrt {3}} \] Output:

19/54*(1-1/x)^(5/6)*(1+1/x)^(1/6)+1/18*(1-1/x)^(5/6)*(1+1/x)^(7/6)+1/3*(1- 
1/x)^(5/6)*(1+1/x)^(7/6)/x+19/162*arctan(-3^(1/2)+2*(1-1/x)^(1/6)/(1+1/x)^ 
(1/6))+19/162*arctan(3^(1/2)+2*(1-1/x)^(1/6)/(1+1/x)^(1/6))+19/81*arctan(( 
1-1/x)^(1/6)/(1+1/x)^(1/6))-19/162*3^(1/2)*arctanh(3^(1/2)*(1-1/x)^(1/6)/( 
1+(1-1/x)^(1/3)/(1+1/x)^(1/3))/(1+1/x)^(1/6))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.24 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.58 \[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^4} \, dx=\frac {1}{486} \left (\frac {18 e^{\frac {1}{3} \coth ^{-1}(x)} \left (19+8 e^{2 \coth ^{-1}(x)}+61 e^{4 \coth ^{-1}(x)}\right )}{\left (1+e^{2 \coth ^{-1}(x)}\right )^3}-114 \arctan \left (e^{\frac {1}{3} \coth ^{-1}(x)}\right )-19 \text {RootSum}\left [1-\text {$\#$1}^2+\text {$\#$1}^4\&,\frac {-2 \coth ^{-1}(x)+6 \log \left (e^{\frac {1}{3} \coth ^{-1}(x)}-\text {$\#$1}\right )+\coth ^{-1}(x) \text {$\#$1}^2-3 \log \left (e^{\frac {1}{3} \coth ^{-1}(x)}-\text {$\#$1}\right ) \text {$\#$1}^2}{-\text {$\#$1}+2 \text {$\#$1}^3}\&\right ]\right ) \] Input:

Integrate[E^(ArcCoth[x]/3)/x^4,x]
 

Output:

((18*E^(ArcCoth[x]/3)*(19 + 8*E^(2*ArcCoth[x]) + 61*E^(4*ArcCoth[x])))/(1 
+ E^(2*ArcCoth[x]))^3 - 114*ArcTan[E^(ArcCoth[x]/3)] - 19*RootSum[1 - #1^2 
 + #1^4 & , (-2*ArcCoth[x] + 6*Log[E^(ArcCoth[x]/3) - #1] + ArcCoth[x]*#1^ 
2 - 3*Log[E^(ArcCoth[x]/3) - #1]*#1^2)/(-#1 + 2*#1^3) & ])/486
 

Rubi [A] (warning: unable to verify)

Time = 0.72 (sec) , antiderivative size = 276, normalized size of antiderivative = 1.21, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.250, Rules used = {6721, 101, 27, 90, 60, 73, 854, 824, 27, 216, 1142, 25, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^4} \, dx\)

\(\Big \downarrow \) 6721

\(\displaystyle -\int \frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{1-\frac {1}{x}} x^2}d\frac {1}{x}\)

\(\Big \downarrow \) 101

\(\displaystyle \frac {1}{3} \int -\frac {\sqrt [6]{1+\frac {1}{x}} \left (3+\frac {1}{x}\right )}{3 \sqrt [6]{1-\frac {1}{x}}}d\frac {1}{x}+\frac {\left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}}{3 x}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}}{3 x}-\frac {1}{9} \int \frac {\sqrt [6]{1+\frac {1}{x}} \left (3+\frac {1}{x}\right )}{\sqrt [6]{1-\frac {1}{x}}}d\frac {1}{x}\)

\(\Big \downarrow \) 90

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}-\frac {19}{6} \int \frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{1-\frac {1}{x}}}d\frac {1}{x}\right )+\frac {\left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}}{3 x}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}-\frac {19}{6} \left (\frac {1}{3} \int \frac {1}{\sqrt [6]{1-\frac {1}{x}} \left (1+\frac {1}{x}\right )^{5/6}}d\frac {1}{x}-\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )\right )+\frac {\left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}}{3 x}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}-\frac {19}{6} \left (-2 \int \frac {1}{\left (2-\frac {1}{x^6}\right )^{5/6} x^4}d\sqrt [6]{1-\frac {1}{x}}-\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )\right )+\frac {\left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}}{3 x}\)

\(\Big \downarrow \) 854

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}-\frac {19}{6} \left (-2 \int \frac {1}{\left (1+\frac {1}{x^6}\right ) x^4}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )\right )+\frac {\left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}}{3 x}\)

\(\Big \downarrow \) 824

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}-\frac {19}{6} \left (-2 \left (\frac {1}{3} \int \frac {1}{1+\frac {1}{x^2}}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{3} \int -\frac {1-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}}{2 \left (-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1\right )}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{3} \int -\frac {\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+1}{2 \left (\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1\right )}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )-\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )\right )+\frac {\left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}}{3 x}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}-\frac {19}{6} \left (-2 \left (\frac {1}{3} \int \frac {1}{1+\frac {1}{x^2}}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\frac {1}{6} \int \frac {1-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\frac {1}{6} \int \frac {\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+1}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )-\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )\right )+\frac {\left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}}{3 x}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}-\frac {19}{6} \left (-2 \left (-\frac {1}{6} \int \frac {1-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\frac {1}{6} \int \frac {\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+1}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{3} \arctan \left (\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )\right )-\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )\right )+\frac {\left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}}{3 x}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}-\frac {19}{6} \left (-2 \left (\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{2} \sqrt {3} \int -\frac {\sqrt {3}-\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\frac {1}{2} \sqrt {3} \int \frac {\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\sqrt {3}}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{3} \arctan \left (\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )\right )-\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )\right )+\frac {\left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}}{3 x}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}-\frac {19}{6} \left (-2 \left (\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}-\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\frac {1}{2} \sqrt {3} \int \frac {\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\sqrt {3}}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{3} \arctan \left (\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )\right )-\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )\right )+\frac {\left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}}{3 x}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}-\frac {19}{6} \left (-2 \left (\frac {1}{6} \left (-\int \frac {1}{-1-\frac {1}{x^2}}d\left (\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\sqrt {3}\right )-\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}-\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{6} \left (-\int \frac {1}{-1-\frac {1}{x^2}}d\left (\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\sqrt {3}\right )-\frac {1}{2} \sqrt {3} \int \frac {\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\sqrt {3}}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{3} \arctan \left (\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )\right )-\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )\right )+\frac {\left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}}{3 x}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}-\frac {19}{6} \left (-2 \left (\frac {1}{6} \left (-\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}-\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}}{-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}-\arctan \left (\sqrt {3}-\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )\right )+\frac {1}{6} \left (\arctan \left (\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\sqrt {3}\right )-\frac {1}{2} \sqrt {3} \int \frac {\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\sqrt {3}}{\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1}d\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{3} \arctan \left (\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )\right )-\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )\right )+\frac {\left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}}{3 x}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {1}{9} \left (\frac {1}{2} \left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}-\frac {19}{6} \left (-2 \left (\frac {1}{3} \arctan \left (\frac {\sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )+\frac {1}{6} \left (\frac {1}{2} \sqrt {3} \log \left (-\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1\right )-\arctan \left (\sqrt {3}-\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}\right )\right )+\frac {1}{6} \left (\arctan \left (\frac {2 \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\sqrt {3}\right )-\frac {1}{2} \sqrt {3} \log \left (\frac {\sqrt {3} \sqrt [6]{1-\frac {1}{x}}}{\sqrt [6]{2-\frac {1}{x^6}}}+\frac {1}{x^2}+1\right )\right )\right )-\left (1-\frac {1}{x}\right )^{5/6} \sqrt [6]{\frac {1}{x}+1}\right )\right )+\frac {\left (1-\frac {1}{x}\right )^{5/6} \left (\frac {1}{x}+1\right )^{7/6}}{3 x}\)

Input:

Int[E^(ArcCoth[x]/3)/x^4,x]
 

Output:

((1 - x^(-1))^(5/6)*(1 + x^(-1))^(7/6))/(3*x) + (((1 - x^(-1))^(5/6)*(1 + 
x^(-1))^(7/6))/2 - (19*(-((1 - x^(-1))^(5/6)*(1 + x^(-1))^(1/6)) - 2*(ArcT 
an[(1 - x^(-1))^(1/6)/(2 - x^(-6))^(1/6)]/3 + (-ArcTan[Sqrt[3] - (2*(1 - x 
^(-1))^(1/6))/(2 - x^(-6))^(1/6)] + (Sqrt[3]*Log[1 - (Sqrt[3]*(1 - x^(-1)) 
^(1/6))/(2 - x^(-6))^(1/6) + x^(-2)])/2)/6 + (ArcTan[Sqrt[3] + (2*(1 - x^( 
-1))^(1/6))/(2 - x^(-6))^(1/6)] - (Sqrt[3]*Log[1 + (Sqrt[3]*(1 - x^(-1))^( 
1/6))/(2 - x^(-6))^(1/6) + x^(-2)])/2)/6)))/6)/9
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 101
Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^( 
p_), x_] :> Simp[b*(a + b*x)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + 
 p + 3))), x] + Simp[1/(d*f*(n + p + 3))   Int[(c + d*x)^n*(e + f*x)^p*Simp 
[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f 
*(n + p + 4) - b*(d*e*(n + 2) + c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, 
 c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 824
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator 
[Rt[a/b, n]], s = Denominator[Rt[a/b, n]], k, u}, Simp[u = Int[(r*Cos[(2*k 
- 1)*m*(Pi/n)] - s*Cos[(2*k - 1)*(m + 1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[(2*k - 
 1)*(Pi/n)]*x + s^2*x^2), x] + Int[(r*Cos[(2*k - 1)*m*(Pi/n)] + s*Cos[(2*k 
- 1)*(m + 1)*(Pi/n)]*x)/(r^2 + 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2*x^2), x] 
; 2*(-1)^(m/2)*(r^(m + 2)/(a*n*s^m))   Int[1/(r^2 + s^2*x^2), x] + 2*(r^(m 
+ 1)/(a*n*s^m))   Sum[u, {k, 1, (n - 2)/4}], x]] /; FreeQ[{a, b}, x] && IGt 
Q[(n - 2)/4, 0] && IGtQ[m, 0] && LtQ[m, n - 1] && PosQ[a/b]
 

rule 854
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + (m + 
 1)/n)   Subst[Int[x^m/(1 - b*x^n)^(p + (m + 1)/n + 1), x], x, x/(a + b*x^n 
)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, - 
2^(-1)] && IntegersQ[m, p + (m + 1)/n]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 6721
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x 
/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, n}, x] && 
!IntegerQ[n] && IntegerQ[m]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 17.21 (sec) , antiderivative size = 901, normalized size of antiderivative = 3.93

method result size
trager \(\text {Expression too large to display}\) \(901\)
risch \(\text {Expression too large to display}\) \(3483\)

Input:

int(1/((x-1)/(1+x))^(1/6)/x^4,x,method=_RETURNVERBOSE)
 

Output:

1/54*(1+x)*(22*x^2+21*x+18)/x^3*(-(1-x)/(1+x))^(5/6)+19/162*RootOf(_Z^2+1) 
*ln((18*RootOf(-3*_Z*RootOf(_Z^2+1)+9*_Z^2-1)*RootOf(_Z^2+1)*(-(1-x)/(1+x) 
)^(1/2)*x+9*RootOf(-3*_Z*RootOf(_Z^2+1)+9*_Z^2-1)*(-(1-x)/(1+x))^(2/3)*x+3 
*RootOf(_Z^2+1)*(-(1-x)/(1+x))^(2/3)*x+3*(-(1-x)/(1+x))^(5/6)*x+18*RootOf( 
-3*_Z*RootOf(_Z^2+1)+9*_Z^2-1)*RootOf(_Z^2+1)*(-(1-x)/(1+x))^(1/2)+9*RootO 
f(-3*_Z*RootOf(_Z^2+1)+9*_Z^2-1)*(-(1-x)/(1+x))^(2/3)+3*RootOf(_Z^2+1)*(-( 
1-x)/(1+x))^(2/3)+3*(-(1-x)/(1+x))^(5/6)-9*RootOf(_Z^2+1)*RootOf(-3*_Z*Roo 
tOf(_Z^2+1)+9*_Z^2-1)*(-(1-x)/(1+x))^(1/6)*x-18*RootOf(-3*_Z*RootOf(_Z^2+1 
)+9*_Z^2-1)*(-(1-x)/(1+x))^(1/3)*x+3*RootOf(_Z^2+1)*(-(1-x)/(1+x))^(1/3)*x 
-9*RootOf(_Z^2+1)*RootOf(-3*_Z*RootOf(_Z^2+1)+9*_Z^2-1)*(-(1-x)/(1+x))^(1/ 
6)-18*RootOf(-3*_Z*RootOf(_Z^2+1)+9*_Z^2-1)*(-(1-x)/(1+x))^(1/3)+3*RootOf( 
_Z^2+1)*(-(1-x)/(1+x))^(1/3)+3*x*RootOf(-3*_Z*RootOf(_Z^2+1)+9*_Z^2-1)-2*x 
*RootOf(_Z^2+1)-3*(-(1-x)/(1+x))^(1/6)*x-3*(-(1-x)/(1+x))^(1/6))/x)+19/54* 
RootOf(-3*_Z*RootOf(_Z^2+1)+9*_Z^2-1)*ln((3*RootOf(_Z^2+1)*(-(1-x)/(1+x))^ 
(2/3)*x-18*RootOf(-3*_Z*RootOf(_Z^2+1)+9*_Z^2-1)*(-(1-x)/(1+x))^(2/3)*x+3* 
(-(1-x)/(1+x))^(5/6)*x+3*RootOf(_Z^2+1)*(-(1-x)/(1+x))^(2/3)-18*RootOf(-3* 
_Z*RootOf(_Z^2+1)+9*_Z^2-1)*(-(1-x)/(1+x))^(2/3)+3*(-(1-x)/(1+x))^(5/6)+3* 
RootOf(_Z^2+1)*(-(1-x)/(1+x))^(1/3)*x-18*RootOf(-3*_Z*RootOf(_Z^2+1)+9*_Z^ 
2-1)*(-(1-x)/(1+x))^(1/3)*x+6*(-(1-x)/(1+x))^(1/2)*x+3*RootOf(_Z^2+1)*(-(1 
-x)/(1+x))^(1/3)-18*RootOf(-3*_Z*RootOf(_Z^2+1)+9*_Z^2-1)*(-(1-x)/(1+x)...
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.76 \[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^4} \, dx=-\frac {19 \, \sqrt {3} x^{3} \log \left (\sqrt {3} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right ) - 19 \, \sqrt {3} x^{3} \log \left (-\sqrt {3} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right ) - 38 \, x^{3} \arctan \left (\sqrt {3} + 2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) - 38 \, x^{3} \arctan \left (-\sqrt {3} + 2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) - 76 \, x^{3} \arctan \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) - 6 \, {\left (22 \, x^{3} + 43 \, x^{2} + 39 \, x + 18\right )} \left (\frac {x - 1}{x + 1}\right )^{\frac {5}{6}}}{324 \, x^{3}} \] Input:

integrate(1/((x-1)/(1+x))^(1/6)/x^4,x, algorithm="fricas")
 

Output:

-1/324*(19*sqrt(3)*x^3*log(sqrt(3)*((x - 1)/(x + 1))^(1/6) + ((x - 1)/(x + 
 1))^(1/3) + 1) - 19*sqrt(3)*x^3*log(-sqrt(3)*((x - 1)/(x + 1))^(1/6) + (( 
x - 1)/(x + 1))^(1/3) + 1) - 38*x^3*arctan(sqrt(3) + 2*((x - 1)/(x + 1))^( 
1/6)) - 38*x^3*arctan(-sqrt(3) + 2*((x - 1)/(x + 1))^(1/6)) - 76*x^3*arcta 
n(((x - 1)/(x + 1))^(1/6)) - 6*(22*x^3 + 43*x^2 + 39*x + 18)*((x - 1)/(x + 
 1))^(5/6))/x^3
 

Sympy [F]

\[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^4} \, dx=\int \frac {1}{x^{4} \sqrt [6]{\frac {x - 1}{x + 1}}}\, dx \] Input:

integrate(1/((x-1)/(1+x))**(1/6)/x**4,x)
 

Output:

Integral(1/(x**4*((x - 1)/(x + 1))**(1/6)), x)
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 205, normalized size of antiderivative = 0.90 \[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^4} \, dx=-\frac {19}{324} \, \sqrt {3} \log \left (\sqrt {3} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right ) + \frac {19}{324} \, \sqrt {3} \log \left (-\sqrt {3} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right ) + \frac {19 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {17}{6}} + 8 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {11}{6}} + 61 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {5}{6}}}{27 \, {\left (\frac {3 \, {\left (x - 1\right )}}{x + 1} + \frac {3 \, {\left (x - 1\right )}^{2}}{{\left (x + 1\right )}^{2}} + \frac {{\left (x - 1\right )}^{3}}{{\left (x + 1\right )}^{3}} + 1\right )}} + \frac {19}{162} \, \arctan \left (\sqrt {3} + 2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) + \frac {19}{162} \, \arctan \left (-\sqrt {3} + 2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) + \frac {19}{81} \, \arctan \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) \] Input:

integrate(1/((x-1)/(1+x))^(1/6)/x^4,x, algorithm="maxima")
 

Output:

-19/324*sqrt(3)*log(sqrt(3)*((x - 1)/(x + 1))^(1/6) + ((x - 1)/(x + 1))^(1 
/3) + 1) + 19/324*sqrt(3)*log(-sqrt(3)*((x - 1)/(x + 1))^(1/6) + ((x - 1)/ 
(x + 1))^(1/3) + 1) + 1/27*(19*((x - 1)/(x + 1))^(17/6) + 8*((x - 1)/(x + 
1))^(11/6) + 61*((x - 1)/(x + 1))^(5/6))/(3*(x - 1)/(x + 1) + 3*(x - 1)^2/ 
(x + 1)^2 + (x - 1)^3/(x + 1)^3 + 1) + 19/162*arctan(sqrt(3) + 2*((x - 1)/ 
(x + 1))^(1/6)) + 19/162*arctan(-sqrt(3) + 2*((x - 1)/(x + 1))^(1/6)) + 19 
/81*arctan(((x - 1)/(x + 1))^(1/6))
 

Giac [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 199, normalized size of antiderivative = 0.87 \[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^4} \, dx=-\frac {19}{324} \, \sqrt {3} \log \left (\sqrt {3} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right ) + \frac {19}{324} \, \sqrt {3} \log \left (-\sqrt {3} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right ) + \frac {\frac {8 \, {\left (x - 1\right )} \left (\frac {x - 1}{x + 1}\right )^{\frac {5}{6}}}{x + 1} + \frac {19 \, {\left (x - 1\right )}^{2} \left (\frac {x - 1}{x + 1}\right )^{\frac {5}{6}}}{{\left (x + 1\right )}^{2}} + 61 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {5}{6}}}{27 \, {\left (\frac {x - 1}{x + 1} + 1\right )}^{3}} + \frac {19}{162} \, \arctan \left (\sqrt {3} + 2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) + \frac {19}{162} \, \arctan \left (-\sqrt {3} + 2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) + \frac {19}{81} \, \arctan \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}}\right ) \] Input:

integrate(1/((x-1)/(1+x))^(1/6)/x^4,x, algorithm="giac")
 

Output:

-19/324*sqrt(3)*log(sqrt(3)*((x - 1)/(x + 1))^(1/6) + ((x - 1)/(x + 1))^(1 
/3) + 1) + 19/324*sqrt(3)*log(-sqrt(3)*((x - 1)/(x + 1))^(1/6) + ((x - 1)/ 
(x + 1))^(1/3) + 1) + 1/27*(8*(x - 1)*((x - 1)/(x + 1))^(5/6)/(x + 1) + 19 
*(x - 1)^2*((x - 1)/(x + 1))^(5/6)/(x + 1)^2 + 61*((x - 1)/(x + 1))^(5/6)) 
/((x - 1)/(x + 1) + 1)^3 + 19/162*arctan(sqrt(3) + 2*((x - 1)/(x + 1))^(1/ 
6)) + 19/162*arctan(-sqrt(3) + 2*((x - 1)/(x + 1))^(1/6)) + 19/81*arctan(( 
(x - 1)/(x + 1))^(1/6))
 

Mupad [B] (verification not implemented)

Time = 23.45 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.70 \[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^4} \, dx=\frac {19\,\mathrm {atan}\left ({\left (\frac {x-1}{x+1}\right )}^{1/6}\right )}{81}+\frac {\frac {61\,{\left (\frac {x-1}{x+1}\right )}^{5/6}}{27}+\frac {8\,{\left (\frac {x-1}{x+1}\right )}^{11/6}}{27}+\frac {19\,{\left (\frac {x-1}{x+1}\right )}^{17/6}}{27}}{\frac {3\,\left (x-1\right )}{x+1}+\frac {3\,{\left (x-1\right )}^2}{{\left (x+1\right )}^2}+\frac {{\left (x-1\right )}^3}{{\left (x+1\right )}^3}+1}-\mathrm {atan}\left (\frac {4952198\,{\left (\frac {x-1}{x+1}\right )}^{1/6}}{14348907\,\left (-\frac {2476099}{14348907}+\frac {\sqrt {3}\,2476099{}\mathrm {i}}{14348907}\right )}\right )\,\left (\frac {19}{162}+\frac {\sqrt {3}\,19{}\mathrm {i}}{162}\right )-\mathrm {atan}\left (\frac {4952198\,{\left (\frac {x-1}{x+1}\right )}^{1/6}}{14348907\,\left (\frac {2476099}{14348907}+\frac {\sqrt {3}\,2476099{}\mathrm {i}}{14348907}\right )}\right )\,\left (-\frac {19}{162}+\frac {\sqrt {3}\,19{}\mathrm {i}}{162}\right ) \] Input:

int(1/(x^4*((x - 1)/(x + 1))^(1/6)),x)
 

Output:

(19*atan(((x - 1)/(x + 1))^(1/6)))/81 + ((61*((x - 1)/(x + 1))^(5/6))/27 + 
 (8*((x - 1)/(x + 1))^(11/6))/27 + (19*((x - 1)/(x + 1))^(17/6))/27)/((3*( 
x - 1))/(x + 1) + (3*(x - 1)^2)/(x + 1)^2 + (x - 1)^3/(x + 1)^3 + 1) - ata 
n((4952198*((x - 1)/(x + 1))^(1/6))/(14348907*((3^(1/2)*2476099i)/14348907 
 - 2476099/14348907)))*((3^(1/2)*19i)/162 + 19/162) - atan((4952198*((x - 
1)/(x + 1))^(1/6))/(14348907*((3^(1/2)*2476099i)/14348907 + 2476099/143489 
07)))*((3^(1/2)*19i)/162 - 19/162)
 

Reduce [B] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.33 \[ \int \frac {e^{\frac {1}{3} \coth ^{-1}(x)}}{x^4} \, dx=\frac {\left (x -1\right )^{\frac {5}{6}} \left (-7 \left (x +1\right )^{\frac {3}{2}} x^{3}+7 \left (x +1\right )^{\frac {3}{2}} x^{2}+\left (x +1\right )^{\frac {3}{2}} x +2 \left (x +1\right )^{\frac {3}{2}}+54 \sqrt {x +1}\, \mathrm {log}\left (\left (x -1\right )^{\frac {1}{6}}\right ) x^{3}-9 \sqrt {x +1}\, \mathrm {log}\left (x \right ) x^{3}\right )}{6 \left (x +1\right )^{\frac {1}{3}} x^{3}} \] Input:

int(1/((x-1)/(1+x))^(1/6)/x^4,x)
 

Output:

((x - 1)**(5/6)*( - 7*(x + 1)**(3/2)*x**3 + 7*(x + 1)**(3/2)*x**2 + (x + 1 
)**(3/2)*x + 2*(x + 1)**(3/2) + 54*sqrt(x + 1)*log((x - 1)**(1/6))*x**3 - 
9*sqrt(x + 1)*log(x)*x**3))/(6*(x + 1)**(1/3)*x**3)