\(\int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx\) [337]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 165 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\frac {2 \sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}}}+\frac {2 \sqrt {\frac {1}{a x}} \sqrt {c-a c x} \text {arcsinh}\left (\sqrt {\frac {1}{a x}}\right )}{\sqrt {1-\frac {1}{a x}}}-\frac {4 \sqrt {2} \sqrt {\frac {1}{a x}} \sqrt {c-a c x} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{a x}}}{\sqrt {1+\frac {1}{a x}}}\right )}{\sqrt {1-\frac {1}{a x}}} \] Output:

2*(1+1/a/x)^(1/2)*(-a*c*x+c)^(1/2)/(1-1/a/x)^(1/2)+2*(1/a/x)^(1/2)*(-a*c*x 
+c)^(1/2)*arcsinh((1/a/x)^(1/2))/(1-1/a/x)^(1/2)-4*2^(1/2)*(1/a/x)^(1/2)*( 
-a*c*x+c)^(1/2)*arctanh(2^(1/2)*(1/a/x)^(1/2)/(1+1/a/x)^(1/2))/(1-1/a/x)^( 
1/2)
 

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.73 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\frac {2 \sqrt {c-a c x} \left (\sqrt {a} \sqrt {1+\frac {1}{a x}}+\sqrt {\frac {1}{x}} \text {arcsinh}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right )-2 \sqrt {2} \sqrt {\frac {1}{x}} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {1+\frac {1}{a x}}}\right )\right )}{\sqrt {a} \sqrt {1-\frac {1}{a x}}} \] Input:

Integrate[(E^(3*ArcCoth[a*x])*Sqrt[c - a*c*x])/x,x]
 

Output:

(2*Sqrt[c - a*c*x]*(Sqrt[a]*Sqrt[1 + 1/(a*x)] + Sqrt[x^(-1)]*ArcSinh[Sqrt[ 
x^(-1)]/Sqrt[a]] - 2*Sqrt[2]*Sqrt[x^(-1)]*ArcTanh[(Sqrt[2]*Sqrt[x^(-1)])/( 
Sqrt[a]*Sqrt[1 + 1/(a*x)])]))/(Sqrt[a]*Sqrt[1 - 1/(a*x)])
 

Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.79, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {6730, 27, 109, 27, 175, 63, 104, 219, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c-a c x} e^{3 \coth ^{-1}(a x)}}{x} \, dx\)

\(\Big \downarrow \) 6730

\(\displaystyle -\frac {\sqrt {\frac {1}{x}} \sqrt {c-a c x} \int \frac {a \left (1+\frac {1}{a x}\right )^{3/2}}{\left (a-\frac {1}{x}\right ) \left (\frac {1}{x}\right )^{3/2}}d\frac {1}{x}}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \int \frac {\left (1+\frac {1}{a x}\right )^{3/2}}{\left (a-\frac {1}{x}\right ) \left (\frac {1}{x}\right )^{3/2}}d\frac {1}{x}}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 109

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (-\frac {2 \int -\frac {3 a+\frac {1}{x}}{2 a \left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}} \sqrt {\frac {1}{x}}}d\frac {1}{x}}{a}-\frac {2 \sqrt {\frac {1}{a x}+1}}{a \sqrt {\frac {1}{x}}}\right )}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (\frac {\int \frac {3 a+\frac {1}{x}}{\left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}} \sqrt {\frac {1}{x}}}d\frac {1}{x}}{a^2}-\frac {2 \sqrt {\frac {1}{a x}+1}}{a \sqrt {\frac {1}{x}}}\right )}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 175

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (\frac {4 a \int \frac {1}{\left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}} \sqrt {\frac {1}{x}}}d\frac {1}{x}-\int \frac {1}{\sqrt {1+\frac {1}{a x}} \sqrt {\frac {1}{x}}}d\frac {1}{x}}{a^2}-\frac {2 \sqrt {\frac {1}{a x}+1}}{a \sqrt {\frac {1}{x}}}\right )}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 63

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (\frac {4 a \int \frac {1}{\left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}} \sqrt {\frac {1}{x}}}d\frac {1}{x}-2 \int \frac {1}{\sqrt {1+\frac {1}{x^2 a}}}d\sqrt {\frac {1}{x}}}{a^2}-\frac {2 \sqrt {\frac {1}{a x}+1}}{a \sqrt {\frac {1}{x}}}\right )}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (\frac {8 a \int \frac {1}{a-\frac {2}{x^2}}d\frac {\sqrt {\frac {1}{x}}}{\sqrt {1+\frac {1}{a x}}}-2 \int \frac {1}{\sqrt {1+\frac {1}{x^2 a}}}d\sqrt {\frac {1}{x}}}{a^2}-\frac {2 \sqrt {\frac {1}{a x}+1}}{a \sqrt {\frac {1}{x}}}\right )}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (\frac {4 \sqrt {2} \sqrt {a} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {\frac {1}{a x}+1}}\right )-2 \int \frac {1}{\sqrt {1+\frac {1}{x^2 a}}}d\sqrt {\frac {1}{x}}}{a^2}-\frac {2 \sqrt {\frac {1}{a x}+1}}{a \sqrt {\frac {1}{x}}}\right )}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 222

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (\frac {4 \sqrt {2} \sqrt {a} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {\frac {1}{a x}+1}}\right )-2 \sqrt {a} \text {arcsinh}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right )}{a^2}-\frac {2 \sqrt {\frac {1}{a x}+1}}{a \sqrt {\frac {1}{x}}}\right )}{\sqrt {1-\frac {1}{a x}}}\)

Input:

Int[(E^(3*ArcCoth[a*x])*Sqrt[c - a*c*x])/x,x]
 

Output:

-((a*Sqrt[x^(-1)]*Sqrt[c - a*c*x]*((-2*Sqrt[1 + 1/(a*x)])/(a*Sqrt[x^(-1)]) 
 + (-2*Sqrt[a]*ArcSinh[Sqrt[x^(-1)]/Sqrt[a]] + 4*Sqrt[2]*Sqrt[a]*ArcTanh[( 
Sqrt[2]*Sqrt[x^(-1)])/(Sqrt[a]*Sqrt[1 + 1/(a*x)])])/a^2))/Sqrt[1 - 1/(a*x) 
])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 63
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2/b   S 
ubst[Int[1/Sqrt[c + d*(x^2/b)], x], x, Sqrt[b*x]], x] /; FreeQ[{b, c, d}, x 
] && GtQ[c, 0]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 175
Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_ 
)))/((a_.) + (b_.)*(x_)), x_] :> Simp[h/b   Int[(c + d*x)^n*(e + f*x)^p, x] 
, x] + Simp[(b*g - a*h)/b   Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)), x], x] 
 /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 6730
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(p 
_), x_Symbol] :> Simp[(-(e*x)^m)*(1/x)^(m + p)*((c + d*x)^p/(1 + c/(d*x))^p 
)   Subst[Int[((1 + c*(x/d))^p*((1 + x/a)^(n/2)/x^(m + p + 2)))/(1 - x/a)^( 
n/2), x], x, 1/x], x] /; FreeQ[{a, c, d, e, m, n, p}, x] && EqQ[a^2*c^2 - d 
^2, 0] &&  !IntegerQ[p]
 
Maple [A] (verified)

Time = 0.15 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.67

method result size
default \(-\frac {2 \left (a x -1\right ) \sqrt {-c \left (a x -1\right )}\, \left (2 \sqrt {c}\, \sqrt {2}\, \arctan \left (\frac {\sqrt {-c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right )-\sqrt {c}\, \arctan \left (\frac {\sqrt {-c \left (a x +1\right )}}{\sqrt {c}}\right )-\sqrt {-c \left (a x +1\right )}\right )}{\left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}} \left (a x +1\right ) \sqrt {-c \left (a x +1\right )}}\) \(110\)

Input:

int(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x,x,method=_RETURNVERBOSE)
 

Output:

-2/((a*x-1)/(a*x+1))^(3/2)*(a*x-1)/(a*x+1)*(-c*(a*x-1))^(1/2)*(2*c^(1/2)*2 
^(1/2)*arctan(1/2*(-c*(a*x+1))^(1/2)*2^(1/2)/c^(1/2))-c^(1/2)*arctan((-c*( 
a*x+1))^(1/2)/c^(1/2))-(-c*(a*x+1))^(1/2))/(-c*(a*x+1))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 363, normalized size of antiderivative = 2.20 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\left [\frac {2 \, \sqrt {2} {\left (a x - 1\right )} \sqrt {-c} \log \left (-\frac {a^{2} c x^{2} + 2 \, a c x + 2 \, \sqrt {2} \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} - 3 \, c}{a^{2} x^{2} - 2 \, a x + 1}\right ) + {\left (a x - 1\right )} \sqrt {-c} \log \left (-\frac {a^{2} c x^{2} + a c x - 2 \, \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} - 2 \, c}{a x^{2} - x}\right ) + 2 \, \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{a x - 1}, -\frac {2 \, {\left (2 \, \sqrt {2} {\left (a x - 1\right )} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}}}{2 \, {\left (a c x - c\right )}}\right ) - {\left (a x - 1\right )} \sqrt {c} \arctan \left (\frac {\sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}}}{a c x - c}\right ) - \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}}\right )}}{a x - 1}\right ] \] Input:

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x,x, algorithm="frica 
s")
 

Output:

[(2*sqrt(2)*(a*x - 1)*sqrt(-c)*log(-(a^2*c*x^2 + 2*a*c*x + 2*sqrt(2)*sqrt( 
-a*c*x + c)*(a*x + 1)*sqrt(-c)*sqrt((a*x - 1)/(a*x + 1)) - 3*c)/(a^2*x^2 - 
 2*a*x + 1)) + (a*x - 1)*sqrt(-c)*log(-(a^2*c*x^2 + a*c*x - 2*sqrt(-a*c*x 
+ c)*(a*x + 1)*sqrt(-c)*sqrt((a*x - 1)/(a*x + 1)) - 2*c)/(a*x^2 - x)) + 2* 
sqrt(-a*c*x + c)*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1)))/(a*x - 1), -2*(2*sqr 
t(2)*(a*x - 1)*sqrt(c)*arctan(1/2*sqrt(2)*sqrt(-a*c*x + c)*(a*x + 1)*sqrt( 
c)*sqrt((a*x - 1)/(a*x + 1))/(a*c*x - c)) - (a*x - 1)*sqrt(c)*arctan(sqrt( 
-a*c*x + c)*(a*x + 1)*sqrt(c)*sqrt((a*x - 1)/(a*x + 1))/(a*c*x - c)) - sqr 
t(-a*c*x + c)*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1)))/(a*x - 1)]
 

Sympy [F]

\[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\int \frac {\sqrt {- c \left (a x - 1\right )}}{x \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(1/((a*x-1)/(a*x+1))**(3/2)*(-a*c*x+c)**(1/2)/x,x)
 

Output:

Integral(sqrt(-c*(a*x - 1))/(x*((a*x - 1)/(a*x + 1))**(3/2)), x)
 

Maxima [F]

\[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\int { \frac {\sqrt {-a c x + c}}{x \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x,x, algorithm="maxim 
a")
 

Output:

integrate(sqrt(-a*c*x + c)/(x*((a*x - 1)/(a*x + 1))^(3/2)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x,x, algorithm="giac" 
)
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\int \frac {\sqrt {c-a\,c\,x}}{x\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}} \,d x \] Input:

int((c - a*c*x)^(1/2)/(x*((a*x - 1)/(a*x + 1))^(3/2)),x)
                                                                                    
                                                                                    
 

Output:

int((c - a*c*x)^(1/2)/(x*((a*x - 1)/(a*x + 1))^(3/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.79 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\sqrt {c}\, i \left (-2 \sqrt {a x +1}-4 \sqrt {2}\, \mathrm {log}\left (\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )\right )+2 \sqrt {2}-\mathrm {log}\left (-\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )-1\right )+\mathrm {log}\left (-\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )+1\right )+\mathrm {log}\left (\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )-1\right )-\mathrm {log}\left (\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )+1\right )\right ) \] Input:

int(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x,x)
 

Output:

sqrt(c)*i*( - 2*sqrt(a*x + 1) - 4*sqrt(2)*log(tan(asin(sqrt( - a*x + 1)/sq 
rt(2))/2)) + 2*sqrt(2) - log( - sqrt(2) + tan(asin(sqrt( - a*x + 1)/sqrt(2 
))/2) - 1) + log( - sqrt(2) + tan(asin(sqrt( - a*x + 1)/sqrt(2))/2) + 1) + 
 log(sqrt(2) + tan(asin(sqrt( - a*x + 1)/sqrt(2))/2) - 1) - log(sqrt(2) + 
tan(asin(sqrt( - a*x + 1)/sqrt(2))/2) + 1))