\(\int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx\) [338]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 169 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\frac {\sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}} x}+\frac {5 a \sqrt {\frac {1}{a x}} \sqrt {c-a c x} \text {arcsinh}\left (\sqrt {\frac {1}{a x}}\right )}{\sqrt {1-\frac {1}{a x}}}-\frac {4 \sqrt {2} a \sqrt {\frac {1}{a x}} \sqrt {c-a c x} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{a x}}}{\sqrt {1+\frac {1}{a x}}}\right )}{\sqrt {1-\frac {1}{a x}}} \] Output:

(1+1/a/x)^(1/2)*(-a*c*x+c)^(1/2)/(1-1/a/x)^(1/2)/x+5*a*(1/a/x)^(1/2)*(-a*c 
*x+c)^(1/2)*arcsinh((1/a/x)^(1/2))/(1-1/a/x)^(1/2)-4*2^(1/2)*a*(1/a/x)^(1/ 
2)*(-a*c*x+c)^(1/2)*arctanh(2^(1/2)*(1/a/x)^(1/2)/(1+1/a/x)^(1/2))/(1-1/a/ 
x)^(1/2)
 

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.71 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\frac {\sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (\sqrt {1+\frac {1}{a x}} \sqrt {\frac {1}{x}}+5 \sqrt {a} \text {arcsinh}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right )-4 \sqrt {2} \sqrt {a} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {1+\frac {1}{a x}}}\right )\right )}{\sqrt {1-\frac {1}{a x}}} \] Input:

Integrate[(E^(3*ArcCoth[a*x])*Sqrt[c - a*c*x])/x^2,x]
 

Output:

(Sqrt[x^(-1)]*Sqrt[c - a*c*x]*(Sqrt[1 + 1/(a*x)]*Sqrt[x^(-1)] + 5*Sqrt[a]* 
ArcSinh[Sqrt[x^(-1)]/Sqrt[a]] - 4*Sqrt[2]*Sqrt[a]*ArcTanh[(Sqrt[2]*Sqrt[x^ 
(-1)])/(Sqrt[a]*Sqrt[1 + 1/(a*x)])]))/Sqrt[1 - 1/(a*x)]
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 134, normalized size of antiderivative = 0.79, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {6730, 27, 113, 27, 175, 63, 104, 219, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c-a c x} e^{3 \coth ^{-1}(a x)}}{x^2} \, dx\)

\(\Big \downarrow \) 6730

\(\displaystyle -\frac {\sqrt {\frac {1}{x}} \sqrt {c-a c x} \int \frac {a \left (1+\frac {1}{a x}\right )^{3/2}}{\left (a-\frac {1}{x}\right ) \sqrt {\frac {1}{x}}}d\frac {1}{x}}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \int \frac {\left (1+\frac {1}{a x}\right )^{3/2}}{\left (a-\frac {1}{x}\right ) \sqrt {\frac {1}{x}}}d\frac {1}{x}}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 113

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (-\int -\frac {3 a+\frac {5}{x}}{2 a \left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}} \sqrt {\frac {1}{x}}}d\frac {1}{x}-\frac {\sqrt {\frac {1}{x}} \sqrt {\frac {1}{a x}+1}}{a}\right )}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (\frac {\int \frac {3 a+\frac {5}{x}}{\left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}} \sqrt {\frac {1}{x}}}d\frac {1}{x}}{2 a}-\frac {\sqrt {\frac {1}{x}} \sqrt {\frac {1}{a x}+1}}{a}\right )}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 175

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (\frac {8 a \int \frac {1}{\left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}} \sqrt {\frac {1}{x}}}d\frac {1}{x}-5 \int \frac {1}{\sqrt {1+\frac {1}{a x}} \sqrt {\frac {1}{x}}}d\frac {1}{x}}{2 a}-\frac {\sqrt {\frac {1}{x}} \sqrt {\frac {1}{a x}+1}}{a}\right )}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 63

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (\frac {8 a \int \frac {1}{\left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}} \sqrt {\frac {1}{x}}}d\frac {1}{x}-10 \int \frac {1}{\sqrt {1+\frac {1}{x^2 a}}}d\sqrt {\frac {1}{x}}}{2 a}-\frac {\sqrt {\frac {1}{x}} \sqrt {\frac {1}{a x}+1}}{a}\right )}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (\frac {16 a \int \frac {1}{a-\frac {2}{x^2}}d\frac {\sqrt {\frac {1}{x}}}{\sqrt {1+\frac {1}{a x}}}-10 \int \frac {1}{\sqrt {1+\frac {1}{x^2 a}}}d\sqrt {\frac {1}{x}}}{2 a}-\frac {\sqrt {\frac {1}{x}} \sqrt {\frac {1}{a x}+1}}{a}\right )}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (\frac {8 \sqrt {2} \sqrt {a} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {\frac {1}{a x}+1}}\right )-10 \int \frac {1}{\sqrt {1+\frac {1}{x^2 a}}}d\sqrt {\frac {1}{x}}}{2 a}-\frac {\sqrt {\frac {1}{x}} \sqrt {\frac {1}{a x}+1}}{a}\right )}{\sqrt {1-\frac {1}{a x}}}\)

\(\Big \downarrow \) 222

\(\displaystyle -\frac {a \sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (\frac {8 \sqrt {2} \sqrt {a} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {\frac {1}{a x}+1}}\right )-10 \sqrt {a} \text {arcsinh}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right )}{2 a}-\frac {\sqrt {\frac {1}{x}} \sqrt {\frac {1}{a x}+1}}{a}\right )}{\sqrt {1-\frac {1}{a x}}}\)

Input:

Int[(E^(3*ArcCoth[a*x])*Sqrt[c - a*c*x])/x^2,x]
 

Output:

-((a*Sqrt[x^(-1)]*Sqrt[c - a*c*x]*(-((Sqrt[1 + 1/(a*x)]*Sqrt[x^(-1)])/a) + 
 (-10*Sqrt[a]*ArcSinh[Sqrt[x^(-1)]/Sqrt[a]] + 8*Sqrt[2]*Sqrt[a]*ArcTanh[(S 
qrt[2]*Sqrt[x^(-1)])/(Sqrt[a]*Sqrt[1 + 1/(a*x)])])/(2*a)))/Sqrt[1 - 1/(a*x 
)])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 63
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2/b   S 
ubst[Int[1/Sqrt[c + d*(x^2/b)], x], x, Sqrt[b*x]], x] /; FreeQ[{b, c, d}, x 
] && GtQ[c, 0]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 113
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/(d*f*(m + n + p + 1))), x] + Simp[1/(d*f*(m + n + p + 1))   Int[(a + b*x) 
^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m 
 - 1) + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m 
 + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] & 
& GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]
 

rule 175
Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_ 
)))/((a_.) + (b_.)*(x_)), x_] :> Simp[h/b   Int[(c + d*x)^n*(e + f*x)^p, x] 
, x] + Simp[(b*g - a*h)/b   Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)), x], x] 
 /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 6730
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(p 
_), x_Symbol] :> Simp[(-(e*x)^m)*(1/x)^(m + p)*((c + d*x)^p/(1 + c/(d*x))^p 
)   Subst[Int[((1 + c*(x/d))^p*((1 + x/a)^(n/2)/x^(m + p + 2)))/(1 - x/a)^( 
n/2), x], x, 1/x], x] /; FreeQ[{a, c, d, e, m, n, p}, x] && EqQ[a^2*c^2 - d 
^2, 0] &&  !IntegerQ[p]
 
Maple [A] (verified)

Time = 0.17 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.70

method result size
default \(-\frac {\left (a x -1\right ) \left (4 \sqrt {2}\, \arctan \left (\frac {\sqrt {-c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) a c x -5 \arctan \left (\frac {\sqrt {-c \left (a x +1\right )}}{\sqrt {c}}\right ) a c x -\sqrt {-c \left (a x +1\right )}\, \sqrt {c}\right ) \sqrt {-c \left (a x -1\right )}}{\left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}} \left (a x +1\right ) \sqrt {-c \left (a x +1\right )}\, \sqrt {c}\, x}\) \(119\)
risch \(-\frac {c \left (a x -1\right )}{x \sqrt {\frac {a x -1}{a x +1}}\, \sqrt {-c \left (a x -1\right )}}-\frac {\left (\frac {4 a \sqrt {2}\, \arctan \left (\frac {\sqrt {-a c x -c}\, \sqrt {2}}{2 \sqrt {c}}\right )}{\sqrt {c}}-\frac {5 a \arctan \left (\frac {\sqrt {-a c x -c}}{\sqrt {c}}\right )}{\sqrt {c}}\right ) c \sqrt {-c \left (a x +1\right )}\, \left (a x -1\right )}{\sqrt {\frac {a x -1}{a x +1}}\, \left (a x +1\right ) \sqrt {-c \left (a x -1\right )}}\) \(140\)

Input:

int(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x^2,x,method=_RETURNVERBOSE 
)
 

Output:

-(a*x-1)*(4*2^(1/2)*arctan(1/2*(-c*(a*x+1))^(1/2)*2^(1/2)/c^(1/2))*a*c*x-5 
*arctan((-c*(a*x+1))^(1/2)/c^(1/2))*a*c*x-(-c*(a*x+1))^(1/2)*c^(1/2))*(-c* 
(a*x-1))^(1/2)/((a*x-1)/(a*x+1))^(3/2)/(a*x+1)/(-c*(a*x+1))^(1/2)/c^(1/2)/ 
x
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 401, normalized size of antiderivative = 2.37 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\left [\frac {4 \, \sqrt {2} {\left (a^{2} x^{2} - a x\right )} \sqrt {-c} \log \left (-\frac {a^{2} c x^{2} + 2 \, a c x + 2 \, \sqrt {2} \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} - 3 \, c}{a^{2} x^{2} - 2 \, a x + 1}\right ) + 5 \, {\left (a^{2} x^{2} - a x\right )} \sqrt {-c} \log \left (-\frac {a^{2} c x^{2} + a c x - 2 \, \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} - 2 \, c}{a x^{2} - x}\right ) + 2 \, \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{2 \, {\left (a x^{2} - x\right )}}, -\frac {4 \, \sqrt {2} {\left (a^{2} x^{2} - a x\right )} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}}}{2 \, {\left (a c x - c\right )}}\right ) - 5 \, {\left (a^{2} x^{2} - a x\right )} \sqrt {c} \arctan \left (\frac {\sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}}}{a c x - c}\right ) - \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{a x^{2} - x}\right ] \] Input:

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x^2,x, algorithm="fri 
cas")
 

Output:

[1/2*(4*sqrt(2)*(a^2*x^2 - a*x)*sqrt(-c)*log(-(a^2*c*x^2 + 2*a*c*x + 2*sqr 
t(2)*sqrt(-a*c*x + c)*(a*x + 1)*sqrt(-c)*sqrt((a*x - 1)/(a*x + 1)) - 3*c)/ 
(a^2*x^2 - 2*a*x + 1)) + 5*(a^2*x^2 - a*x)*sqrt(-c)*log(-(a^2*c*x^2 + a*c* 
x - 2*sqrt(-a*c*x + c)*(a*x + 1)*sqrt(-c)*sqrt((a*x - 1)/(a*x + 1)) - 2*c) 
/(a*x^2 - x)) + 2*sqrt(-a*c*x + c)*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1)))/(a 
*x^2 - x), -(4*sqrt(2)*(a^2*x^2 - a*x)*sqrt(c)*arctan(1/2*sqrt(2)*sqrt(-a* 
c*x + c)*(a*x + 1)*sqrt(c)*sqrt((a*x - 1)/(a*x + 1))/(a*c*x - c)) - 5*(a^2 
*x^2 - a*x)*sqrt(c)*arctan(sqrt(-a*c*x + c)*(a*x + 1)*sqrt(c)*sqrt((a*x - 
1)/(a*x + 1))/(a*c*x - c)) - sqrt(-a*c*x + c)*(a*x + 1)*sqrt((a*x - 1)/(a* 
x + 1)))/(a*x^2 - x)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\text {Timed out} \] Input:

integrate(1/((a*x-1)/(a*x+1))**(3/2)*(-a*c*x+c)**(1/2)/x**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\int { \frac {\sqrt {-a c x + c}}{x^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x^2,x, algorithm="max 
ima")
 

Output:

integrate(sqrt(-a*c*x + c)/(x^2*((a*x - 1)/(a*x + 1))^(3/2)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x^2,x, algorithm="gia 
c")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\int \frac {\sqrt {c-a\,c\,x}}{x^2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}} \,d x \] Input:

int((c - a*c*x)^(1/2)/(x^2*((a*x - 1)/(a*x + 1))^(3/2)),x)
                                                                                    
                                                                                    
 

Output:

int((c - a*c*x)^(1/2)/(x^2*((a*x - 1)/(a*x + 1))^(3/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.12 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\frac {\sqrt {c}\, i \left (-2 \sqrt {a x +1}-8 \sqrt {2}\, \mathrm {log}\left (\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )\right ) a x +2 \sqrt {2}\, a x -7 \,\mathrm {log}\left (-\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )-1\right ) a x +7 \,\mathrm {log}\left (-\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )+1\right ) a x +7 \,\mathrm {log}\left (\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )-1\right ) a x -7 \,\mathrm {log}\left (\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )+1\right ) a x -2 \,\mathrm {log}\left (\frac {2 \sqrt {a x +1}-2}{\sqrt {2}}\right ) a x +2 \,\mathrm {log}\left (\frac {2 \sqrt {a x +1}+2}{\sqrt {2}}\right ) a x \right )}{2 x} \] Input:

int(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x^2,x)
 

Output:

(sqrt(c)*i*( - 2*sqrt(a*x + 1) - 8*sqrt(2)*log(tan(asin(sqrt( - a*x + 1)/s 
qrt(2))/2))*a*x + 2*sqrt(2)*a*x - 7*log( - sqrt(2) + tan(asin(sqrt( - a*x 
+ 1)/sqrt(2))/2) - 1)*a*x + 7*log( - sqrt(2) + tan(asin(sqrt( - a*x + 1)/s 
qrt(2))/2) + 1)*a*x + 7*log(sqrt(2) + tan(asin(sqrt( - a*x + 1)/sqrt(2))/2 
) - 1)*a*x - 7*log(sqrt(2) + tan(asin(sqrt( - a*x + 1)/sqrt(2))/2) + 1)*a* 
x - 2*log((2*sqrt(a*x + 1) - 2)/sqrt(2))*a*x + 2*log((2*sqrt(a*x + 1) + 2) 
/sqrt(2))*a*x))/(2*x)