\(\int \frac {e^{\text {arctanh}(a x)} (c-a c x)^4}{x^6} \, dx\) [346]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 129 \[ \int \frac {e^{\text {arctanh}(a x)} (c-a c x)^4}{x^6} \, dx=\frac {7 a^3 c^4 \sqrt {1-a^2 x^2}}{8 x^2}-\frac {c^4 \left (1-a^2 x^2\right )^{3/2}}{5 x^5}+\frac {3 a c^4 \left (1-a^2 x^2\right )^{3/2}}{4 x^4}-\frac {17 a^2 c^4 \left (1-a^2 x^2\right )^{3/2}}{15 x^3}-\frac {7}{8} a^5 c^4 \text {arctanh}\left (\sqrt {1-a^2 x^2}\right ) \] Output:

7/8*a^3*c^4*(-a^2*x^2+1)^(1/2)/x^2-1/5*c^4*(-a^2*x^2+1)^(3/2)/x^5+3/4*a*c^ 
4*(-a^2*x^2+1)^(3/2)/x^4-17/15*a^2*c^4*(-a^2*x^2+1)^(3/2)/x^3-7/8*a^5*c^4* 
arctanh((-a^2*x^2+1)^(1/2))
 

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.83 \[ \int \frac {e^{\text {arctanh}(a x)} (c-a c x)^4}{x^6} \, dx=-\frac {c^4 \left (24-90 a x+88 a^2 x^2+75 a^3 x^3-248 a^4 x^4+15 a^5 x^5+136 a^6 x^6+105 a^5 x^5 \sqrt {1-a^2 x^2} \text {arctanh}\left (\sqrt {1-a^2 x^2}\right )\right )}{120 x^5 \sqrt {1-a^2 x^2}} \] Input:

Integrate[(E^ArcTanh[a*x]*(c - a*c*x)^4)/x^6,x]
 

Output:

-1/120*(c^4*(24 - 90*a*x + 88*a^2*x^2 + 75*a^3*x^3 - 248*a^4*x^4 + 15*a^5* 
x^5 + 136*a^6*x^6 + 105*a^5*x^5*Sqrt[1 - a^2*x^2]*ArcTanh[Sqrt[1 - a^2*x^2 
]]))/(x^5*Sqrt[1 - a^2*x^2])
 

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.98, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.526, Rules used = {6678, 27, 540, 2338, 27, 534, 243, 51, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{\text {arctanh}(a x)} (c-a c x)^4}{x^6} \, dx\)

\(\Big \downarrow \) 6678

\(\displaystyle c \int \frac {c^3 (1-a x)^3 \sqrt {1-a^2 x^2}}{x^6}dx\)

\(\Big \downarrow \) 27

\(\displaystyle c^4 \int \frac {(1-a x)^3 \sqrt {1-a^2 x^2}}{x^6}dx\)

\(\Big \downarrow \) 540

\(\displaystyle c^4 \left (-\frac {1}{5} \int \frac {\sqrt {1-a^2 x^2} \left (5 x^2 a^3-17 x a^2+15 a\right )}{x^5}dx-\frac {\left (1-a^2 x^2\right )^{3/2}}{5 x^5}\right )\)

\(\Big \downarrow \) 2338

\(\displaystyle c^4 \left (\frac {1}{5} \left (\frac {1}{4} \int \frac {a^2 (68-35 a x) \sqrt {1-a^2 x^2}}{x^4}dx+\frac {15 a \left (1-a^2 x^2\right )^{3/2}}{4 x^4}\right )-\frac {\left (1-a^2 x^2\right )^{3/2}}{5 x^5}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle c^4 \left (\frac {1}{5} \left (\frac {1}{4} a^2 \int \frac {(68-35 a x) \sqrt {1-a^2 x^2}}{x^4}dx+\frac {15 a \left (1-a^2 x^2\right )^{3/2}}{4 x^4}\right )-\frac {\left (1-a^2 x^2\right )^{3/2}}{5 x^5}\right )\)

\(\Big \downarrow \) 534

\(\displaystyle c^4 \left (\frac {1}{5} \left (\frac {1}{4} a^2 \left (-35 a \int \frac {\sqrt {1-a^2 x^2}}{x^3}dx-\frac {68 \left (1-a^2 x^2\right )^{3/2}}{3 x^3}\right )+\frac {15 a \left (1-a^2 x^2\right )^{3/2}}{4 x^4}\right )-\frac {\left (1-a^2 x^2\right )^{3/2}}{5 x^5}\right )\)

\(\Big \downarrow \) 243

\(\displaystyle c^4 \left (\frac {1}{5} \left (\frac {1}{4} a^2 \left (-\frac {35}{2} a \int \frac {\sqrt {1-a^2 x^2}}{x^4}dx^2-\frac {68 \left (1-a^2 x^2\right )^{3/2}}{3 x^3}\right )+\frac {15 a \left (1-a^2 x^2\right )^{3/2}}{4 x^4}\right )-\frac {\left (1-a^2 x^2\right )^{3/2}}{5 x^5}\right )\)

\(\Big \downarrow \) 51

\(\displaystyle c^4 \left (\frac {1}{5} \left (\frac {1}{4} a^2 \left (-\frac {35}{2} a \left (-\frac {1}{2} a^2 \int \frac {1}{x^2 \sqrt {1-a^2 x^2}}dx^2-\frac {\sqrt {1-a^2 x^2}}{x^2}\right )-\frac {68 \left (1-a^2 x^2\right )^{3/2}}{3 x^3}\right )+\frac {15 a \left (1-a^2 x^2\right )^{3/2}}{4 x^4}\right )-\frac {\left (1-a^2 x^2\right )^{3/2}}{5 x^5}\right )\)

\(\Big \downarrow \) 73

\(\displaystyle c^4 \left (\frac {1}{5} \left (\frac {1}{4} a^2 \left (-\frac {35}{2} a \left (\int \frac {1}{\frac {1}{a^2}-\frac {x^4}{a^2}}d\sqrt {1-a^2 x^2}-\frac {\sqrt {1-a^2 x^2}}{x^2}\right )-\frac {68 \left (1-a^2 x^2\right )^{3/2}}{3 x^3}\right )+\frac {15 a \left (1-a^2 x^2\right )^{3/2}}{4 x^4}\right )-\frac {\left (1-a^2 x^2\right )^{3/2}}{5 x^5}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle c^4 \left (\frac {1}{5} \left (\frac {1}{4} a^2 \left (-\frac {35}{2} a \left (a^2 \text {arctanh}\left (\sqrt {1-a^2 x^2}\right )-\frac {\sqrt {1-a^2 x^2}}{x^2}\right )-\frac {68 \left (1-a^2 x^2\right )^{3/2}}{3 x^3}\right )+\frac {15 a \left (1-a^2 x^2\right )^{3/2}}{4 x^4}\right )-\frac {\left (1-a^2 x^2\right )^{3/2}}{5 x^5}\right )\)

Input:

Int[(E^ArcTanh[a*x]*(c - a*c*x)^4)/x^6,x]
 

Output:

c^4*(-1/5*(1 - a^2*x^2)^(3/2)/x^5 + ((15*a*(1 - a^2*x^2)^(3/2))/(4*x^4) + 
(a^2*((-68*(1 - a^2*x^2)^(3/2))/(3*x^3) - (35*a*(-(Sqrt[1 - a^2*x^2]/x^2) 
+ a^2*ArcTanh[Sqrt[1 - a^2*x^2]]))/2))/4)/5)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 51
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && ILtQ[m, -1] && FractionQ[n] && GtQ[n, 0]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 534
Int[(x_)^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> 
Simp[(-c)*x^(m + 1)*((a + b*x^2)^(p + 1)/(2*a*(p + 1))), x] + Simp[d   Int[ 
x^(m + 1)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x] && ILtQ[m, 
0] && GtQ[p, -1] && EqQ[m + 2*p + 3, 0]
 

rule 540
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol 
] :> With[{Qx = PolynomialQuotient[(c + d*x)^n, x, x], R = PolynomialRemain 
der[(c + d*x)^n, x, x]}, Simp[R*x^(m + 1)*((a + b*x^2)^(p + 1)/(a*(m + 1))) 
, x] + Simp[1/(a*(m + 1))   Int[x^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*(m + 
1)*Qx - b*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, c, d, p}, x] && IG 
tQ[n, 1] && ILtQ[m, -1] && GtQ[p, -1] && IntegerQ[2*p]
 

rule 2338
Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{ 
Q = PolynomialQuotient[Pq, c*x, x], R = PolynomialRemainder[Pq, c*x, x]}, S 
imp[R*(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] + Simp[1/(a*c*( 
m + 1))   Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*( 
m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && Lt 
Q[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])
 

rule 6678
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.)*((e_.) + (f_.)* 
(x_))^(m_.), x_Symbol] :> Simp[c^n   Int[(e + f*x)^m*(c + d*x)^(p - n)*(1 - 
 a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, e, f, m, p}, x] && EqQ[a*c + d, 
0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p - n/2 - 1 
, 0]) && IntegerQ[2*p]
 
Maple [A] (verified)

Time = 0.34 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.69

method result size
risch \(-\frac {\left (136 x^{6} a^{6}+15 a^{5} x^{5}-248 a^{4} x^{4}+75 a^{3} x^{3}+88 a^{2} x^{2}-90 a x +24\right ) c^{4}}{120 x^{5} \sqrt {-a^{2} x^{2}+1}}-\frac {7 a^{5} \operatorname {arctanh}\left (\frac {1}{\sqrt {-a^{2} x^{2}+1}}\right ) c^{4}}{8}\) \(89\)
default \(c^{4} \left (-\frac {\sqrt {-a^{2} x^{2}+1}}{5 x^{5}}+\frac {14 a^{2} \left (-\frac {\sqrt {-a^{2} x^{2}+1}}{3 x^{3}}-\frac {2 a^{2} \sqrt {-a^{2} x^{2}+1}}{3 x}\right )}{5}-a^{5} \operatorname {arctanh}\left (\frac {1}{\sqrt {-a^{2} x^{2}+1}}\right )-3 a \left (-\frac {\sqrt {-a^{2} x^{2}+1}}{4 x^{4}}+\frac {3 a^{2} \left (-\frac {\sqrt {-a^{2} x^{2}+1}}{2 x^{2}}-\frac {a^{2} \operatorname {arctanh}\left (\frac {1}{\sqrt {-a^{2} x^{2}+1}}\right )}{2}\right )}{4}\right )+2 a^{3} \left (-\frac {\sqrt {-a^{2} x^{2}+1}}{2 x^{2}}-\frac {a^{2} \operatorname {arctanh}\left (\frac {1}{\sqrt {-a^{2} x^{2}+1}}\right )}{2}\right )+\frac {3 a^{4} \sqrt {-a^{2} x^{2}+1}}{x}\right )\) \(207\)
meijerg \(\frac {a^{5} c^{4} \left (\left (-2 \ln \left (2\right )+2 \ln \left (x \right )+\ln \left (-a^{2}\right )\right ) \sqrt {\pi }-2 \sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {-a^{2} x^{2}+1}}{2}\right )\right )}{2 \sqrt {\pi }}+\frac {3 a^{4} c^{4} \sqrt {-a^{2} x^{2}+1}}{x}-\frac {a^{5} c^{4} \left (\frac {\sqrt {\pi }}{x^{2} a^{2}}-\frac {\left (1-2 \ln \left (2\right )+2 \ln \left (x \right )+\ln \left (-a^{2}\right )\right ) \sqrt {\pi }}{2}-\frac {\sqrt {\pi }\, \left (-4 a^{2} x^{2}+8\right )}{8 a^{2} x^{2}}+\frac {\sqrt {\pi }\, \sqrt {-a^{2} x^{2}+1}}{a^{2} x^{2}}+\sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {-a^{2} x^{2}+1}}{2}\right )\right )}{\sqrt {\pi }}-\frac {2 a^{2} c^{4} \left (2 a^{2} x^{2}+1\right ) \sqrt {-a^{2} x^{2}+1}}{3 x^{3}}-\frac {3 a^{5} c^{4} \left (-\frac {\sqrt {\pi }}{2 x^{4} a^{4}}-\frac {\sqrt {\pi }}{2 x^{2} a^{2}}+\frac {3 \left (\frac {7}{6}-2 \ln \left (2\right )+2 \ln \left (x \right )+\ln \left (-a^{2}\right )\right ) \sqrt {\pi }}{8}+\frac {\sqrt {\pi }\, \left (-7 a^{4} x^{4}+8 a^{2} x^{2}+8\right )}{16 a^{4} x^{4}}-\frac {\sqrt {\pi }\, \left (12 a^{2} x^{2}+8\right ) \sqrt {-a^{2} x^{2}+1}}{16 a^{4} x^{4}}-\frac {3 \sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {-a^{2} x^{2}+1}}{2}\right )}{4}\right )}{2 \sqrt {\pi }}-\frac {c^{4} \left (\frac {8}{3} a^{4} x^{4}+\frac {4}{3} a^{2} x^{2}+1\right ) \sqrt {-a^{2} x^{2}+1}}{5 x^{5}}\) \(395\)

Input:

int((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^4/x^6,x,method=_RETURNVERBOSE)
 

Output:

-1/120*(136*a^6*x^6+15*a^5*x^5-248*a^4*x^4+75*a^3*x^3+88*a^2*x^2-90*a*x+24 
)/x^5/(-a^2*x^2+1)^(1/2)*c^4-7/8*a^5*arctanh(1/(-a^2*x^2+1)^(1/2))*c^4
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.74 \[ \int \frac {e^{\text {arctanh}(a x)} (c-a c x)^4}{x^6} \, dx=\frac {105 \, a^{5} c^{4} x^{5} \log \left (\frac {\sqrt {-a^{2} x^{2} + 1} - 1}{x}\right ) + {\left (136 \, a^{4} c^{4} x^{4} + 15 \, a^{3} c^{4} x^{3} - 112 \, a^{2} c^{4} x^{2} + 90 \, a c^{4} x - 24 \, c^{4}\right )} \sqrt {-a^{2} x^{2} + 1}}{120 \, x^{5}} \] Input:

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^4/x^6,x, algorithm="fricas 
")
 

Output:

1/120*(105*a^5*c^4*x^5*log((sqrt(-a^2*x^2 + 1) - 1)/x) + (136*a^4*c^4*x^4 
+ 15*a^3*c^4*x^3 - 112*a^2*c^4*x^2 + 90*a*c^4*x - 24*c^4)*sqrt(-a^2*x^2 + 
1))/x^5
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 5.74 (sec) , antiderivative size = 605, normalized size of antiderivative = 4.69 \[ \int \frac {e^{\text {arctanh}(a x)} (c-a c x)^4}{x^6} \, dx =\text {Too large to display} \] Input:

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*(-a*c*x+c)**4/x**6,x)
 

Output:

a**5*c**4*Piecewise((-acosh(1/(a*x)), 1/Abs(a**2*x**2) > 1), (I*asin(1/(a* 
x)), True)) - 3*a**4*c**4*Piecewise((-I*sqrt(a**2*x**2 - 1)/x, Abs(a**2*x* 
*2) > 1), (-sqrt(-a**2*x**2 + 1)/x, True)) + 2*a**3*c**4*Piecewise((-a**2* 
acosh(1/(a*x))/2 + a/(2*x*sqrt(-1 + 1/(a**2*x**2))) - 1/(2*a*x**3*sqrt(-1 
+ 1/(a**2*x**2))), 1/Abs(a**2*x**2) > 1), (I*a**2*asin(1/(a*x))/2 - I*a*sq 
rt(1 - 1/(a**2*x**2))/(2*x), True)) + 2*a**2*c**4*Piecewise((-2*I*a**2*sqr 
t(a**2*x**2 - 1)/(3*x) - I*sqrt(a**2*x**2 - 1)/(3*x**3), Abs(a**2*x**2) > 
1), (-2*a**2*sqrt(-a**2*x**2 + 1)/(3*x) - sqrt(-a**2*x**2 + 1)/(3*x**3), T 
rue)) - 3*a*c**4*Piecewise((-3*a**4*acosh(1/(a*x))/8 + 3*a**3/(8*x*sqrt(-1 
 + 1/(a**2*x**2))) - a/(8*x**3*sqrt(-1 + 1/(a**2*x**2))) - 1/(4*a*x**5*sqr 
t(-1 + 1/(a**2*x**2))), 1/Abs(a**2*x**2) > 1), (3*I*a**4*asin(1/(a*x))/8 - 
 3*I*a**3/(8*x*sqrt(1 - 1/(a**2*x**2))) + I*a/(8*x**3*sqrt(1 - 1/(a**2*x** 
2))) + I/(4*a*x**5*sqrt(1 - 1/(a**2*x**2))), True)) + c**4*Piecewise((-8*a 
**5*sqrt(-1 + 1/(a**2*x**2))/15 - 4*a**3*sqrt(-1 + 1/(a**2*x**2))/(15*x**2 
) - a*sqrt(-1 + 1/(a**2*x**2))/(5*x**4), 1/Abs(a**2*x**2) > 1), (-8*I*a**5 
*sqrt(1 - 1/(a**2*x**2))/15 - 4*I*a**3*sqrt(1 - 1/(a**2*x**2))/(15*x**2) - 
 I*a*sqrt(1 - 1/(a**2*x**2))/(5*x**4), True))
                                                                                    
                                                                                    
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.12 \[ \int \frac {e^{\text {arctanh}(a x)} (c-a c x)^4}{x^6} \, dx=-\frac {7}{8} \, a^{5} c^{4} \log \left (\frac {2 \, \sqrt {-a^{2} x^{2} + 1}}{{\left | x \right |}} + \frac {2}{{\left | x \right |}}\right ) + \frac {17 \, \sqrt {-a^{2} x^{2} + 1} a^{4} c^{4}}{15 \, x} + \frac {\sqrt {-a^{2} x^{2} + 1} a^{3} c^{4}}{8 \, x^{2}} - \frac {14 \, \sqrt {-a^{2} x^{2} + 1} a^{2} c^{4}}{15 \, x^{3}} + \frac {3 \, \sqrt {-a^{2} x^{2} + 1} a c^{4}}{4 \, x^{4}} - \frac {\sqrt {-a^{2} x^{2} + 1} c^{4}}{5 \, x^{5}} \] Input:

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^4/x^6,x, algorithm="maxima 
")
 

Output:

-7/8*a^5*c^4*log(2*sqrt(-a^2*x^2 + 1)/abs(x) + 2/abs(x)) + 17/15*sqrt(-a^2 
*x^2 + 1)*a^4*c^4/x + 1/8*sqrt(-a^2*x^2 + 1)*a^3*c^4/x^2 - 14/15*sqrt(-a^2 
*x^2 + 1)*a^2*c^4/x^3 + 3/4*sqrt(-a^2*x^2 + 1)*a*c^4/x^4 - 1/5*sqrt(-a^2*x 
^2 + 1)*c^4/x^5
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 354 vs. \(2 (109) = 218\).

Time = 0.13 (sec) , antiderivative size = 354, normalized size of antiderivative = 2.74 \[ \int \frac {e^{\text {arctanh}(a x)} (c-a c x)^4}{x^6} \, dx=\frac {{\left (6 \, a^{6} c^{4} - \frac {45 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )} a^{4} c^{4}}{x} + \frac {130 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{2} a^{2} c^{4}}{x^{2}} - \frac {120 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{3} c^{4}}{x^{3}} - \frac {420 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{4} c^{4}}{a^{2} x^{4}}\right )} a^{10} x^{5}}{960 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{5} {\left | a \right |}} - \frac {7 \, a^{6} c^{4} \log \left (\frac {{\left | -2 \, \sqrt {-a^{2} x^{2} + 1} {\left | a \right |} - 2 \, a \right |}}{2 \, a^{2} {\left | x \right |}}\right )}{8 \, {\left | a \right |}} + \frac {\frac {420 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )} a^{8} c^{4}}{x} + \frac {120 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{2} a^{6} c^{4}}{x^{2}} - \frac {130 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{3} a^{4} c^{4}}{x^{3}} + \frac {45 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{4} a^{2} c^{4}}{x^{4}} - \frac {6 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{5} c^{4}}{x^{5}}}{960 \, a^{4} {\left | a \right |}} \] Input:

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^4/x^6,x, algorithm="giac")
 

Output:

1/960*(6*a^6*c^4 - 45*(sqrt(-a^2*x^2 + 1)*abs(a) + a)*a^4*c^4/x + 130*(sqr 
t(-a^2*x^2 + 1)*abs(a) + a)^2*a^2*c^4/x^2 - 120*(sqrt(-a^2*x^2 + 1)*abs(a) 
 + a)^3*c^4/x^3 - 420*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^4*c^4/(a^2*x^4))*a^1 
0*x^5/((sqrt(-a^2*x^2 + 1)*abs(a) + a)^5*abs(a)) - 7/8*a^6*c^4*log(1/2*abs 
(-2*sqrt(-a^2*x^2 + 1)*abs(a) - 2*a)/(a^2*abs(x)))/abs(a) + 1/960*(420*(sq 
rt(-a^2*x^2 + 1)*abs(a) + a)*a^8*c^4/x + 120*(sqrt(-a^2*x^2 + 1)*abs(a) + 
a)^2*a^6*c^4/x^2 - 130*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^3*a^4*c^4/x^3 + 45* 
(sqrt(-a^2*x^2 + 1)*abs(a) + a)^4*a^2*c^4/x^4 - 6*(sqrt(-a^2*x^2 + 1)*abs( 
a) + a)^5*c^4/x^5)/(a^4*abs(a))
 

Mupad [B] (verification not implemented)

Time = 14.08 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.05 \[ \int \frac {e^{\text {arctanh}(a x)} (c-a c x)^4}{x^6} \, dx=\frac {3\,a\,c^4\,\sqrt {1-a^2\,x^2}}{4\,x^4}-\frac {c^4\,\sqrt {1-a^2\,x^2}}{5\,x^5}-\frac {14\,a^2\,c^4\,\sqrt {1-a^2\,x^2}}{15\,x^3}+\frac {a^3\,c^4\,\sqrt {1-a^2\,x^2}}{8\,x^2}+\frac {17\,a^4\,c^4\,\sqrt {1-a^2\,x^2}}{15\,x}+\frac {a^5\,c^4\,\mathrm {atan}\left (\sqrt {1-a^2\,x^2}\,1{}\mathrm {i}\right )\,7{}\mathrm {i}}{8} \] Input:

int(((c - a*c*x)^4*(a*x + 1))/(x^6*(1 - a^2*x^2)^(1/2)),x)
 

Output:

(a^5*c^4*atan((1 - a^2*x^2)^(1/2)*1i)*7i)/8 - (c^4*(1 - a^2*x^2)^(1/2))/(5 
*x^5) + (3*a*c^4*(1 - a^2*x^2)^(1/2))/(4*x^4) - (14*a^2*c^4*(1 - a^2*x^2)^ 
(1/2))/(15*x^3) + (a^3*c^4*(1 - a^2*x^2)^(1/2))/(8*x^2) + (17*a^4*c^4*(1 - 
 a^2*x^2)^(1/2))/(15*x)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.85 \[ \int \frac {e^{\text {arctanh}(a x)} (c-a c x)^4}{x^6} \, dx=\frac {c^{4} \left (136 \sqrt {-a^{2} x^{2}+1}\, a^{4} x^{4}+15 \sqrt {-a^{2} x^{2}+1}\, a^{3} x^{3}-112 \sqrt {-a^{2} x^{2}+1}\, a^{2} x^{2}+90 \sqrt {-a^{2} x^{2}+1}\, a x -24 \sqrt {-a^{2} x^{2}+1}+105 \,\mathrm {log}\left (\tan \left (\frac {\mathit {asin} \left (a x \right )}{2}\right )\right ) a^{5} x^{5}\right )}{120 x^{5}} \] Input:

int((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^4/x^6,x)
 

Output:

(c**4*(136*sqrt( - a**2*x**2 + 1)*a**4*x**4 + 15*sqrt( - a**2*x**2 + 1)*a* 
*3*x**3 - 112*sqrt( - a**2*x**2 + 1)*a**2*x**2 + 90*sqrt( - a**2*x**2 + 1) 
*a*x - 24*sqrt( - a**2*x**2 + 1) + 105*log(tan(asin(a*x)/2))*a**5*x**5))/( 
120*x**5)