\(\int \frac {x^5 \log (c+d x)}{a+b x^3} \, dx\) [283]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 371 \[ \int \frac {x^5 \log (c+d x)}{a+b x^3} \, dx=-\frac {c^2 x}{3 b d^2}+\frac {c x^2}{6 b d}-\frac {x^3}{9 b}+\frac {c^3 \log (c+d x)}{3 b d^3}+\frac {x^3 \log (c+d x)}{3 b}-\frac {a \log \left (-\frac {d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right ) \log (c+d x)}{3 b^2}-\frac {a \log \left (-\frac {d \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} c-(-1)^{2/3} \sqrt [3]{a} d}\right ) \log (c+d x)}{3 b^2}-\frac {a \log \left (\frac {\sqrt [3]{-1} d \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}{\sqrt [3]{b} c+\sqrt [3]{-1} \sqrt [3]{a} d}\right ) \log (c+d x)}{3 b^2}-\frac {a \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right )}{3 b^2}-\frac {a \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c+\sqrt [3]{-1} \sqrt [3]{a} d}\right )}{3 b^2}-\frac {a \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c-(-1)^{2/3} \sqrt [3]{a} d}\right )}{3 b^2} \] Output:

-1/3*c^2*x/b/d^2+1/6*c*x^2/b/d-1/9*x^3/b+1/3*c^3*ln(d*x+c)/b/d^3+1/3*x^3*l 
n(d*x+c)/b-1/3*a*ln(-d*(a^(1/3)+b^(1/3)*x)/(b^(1/3)*c-a^(1/3)*d))*ln(d*x+c 
)/b^2-1/3*a*ln(-d*((-1)^(2/3)*a^(1/3)+b^(1/3)*x)/(b^(1/3)*c-(-1)^(2/3)*a^( 
1/3)*d))*ln(d*x+c)/b^2-1/3*a*ln((-1)^(1/3)*d*(a^(1/3)+(-1)^(2/3)*b^(1/3)*x 
)/(b^(1/3)*c+(-1)^(1/3)*a^(1/3)*d))*ln(d*x+c)/b^2-1/3*a*polylog(2,b^(1/3)* 
(d*x+c)/(b^(1/3)*c-a^(1/3)*d))/b^2-1/3*a*polylog(2,b^(1/3)*(d*x+c)/(b^(1/3 
)*c+(-1)^(1/3)*a^(1/3)*d))/b^2-1/3*a*polylog(2,b^(1/3)*(d*x+c)/(b^(1/3)*c- 
(-1)^(2/3)*a^(1/3)*d))/b^2
 

Mathematica [A] (verified)

Time = 0.30 (sec) , antiderivative size = 376, normalized size of antiderivative = 1.01 \[ \int \frac {x^5 \log (c+d x)}{a+b x^3} \, dx=-\frac {c^2 x}{3 b d^2}+\frac {c x^2}{6 b d}-\frac {x^3}{9 b}+\frac {c^3 \log (c+d x)}{3 b d^3}+\frac {x^3 \log (c+d x)}{3 b}-\frac {a \log \left (-\frac {d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right ) \log (c+d x)}{3 b^2}-\frac {a \log \left (-\frac {(-1)^{2/3} d \left (\sqrt [3]{a}-\sqrt [3]{-1} \sqrt [3]{b} x\right )}{\sqrt [3]{b} c-(-1)^{2/3} \sqrt [3]{a} d}\right ) \log (c+d x)}{3 b^2}-\frac {a \log \left (\frac {\sqrt [3]{-1} d \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}{\sqrt [3]{b} c+\sqrt [3]{-1} \sqrt [3]{a} d}\right ) \log (c+d x)}{3 b^2}-\frac {a \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right )}{3 b^2}-\frac {a \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c+\sqrt [3]{-1} \sqrt [3]{a} d}\right )}{3 b^2}-\frac {a \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c-(-1)^{2/3} \sqrt [3]{a} d}\right )}{3 b^2} \] Input:

Integrate[(x^5*Log[c + d*x])/(a + b*x^3),x]
 

Output:

-1/3*(c^2*x)/(b*d^2) + (c*x^2)/(6*b*d) - x^3/(9*b) + (c^3*Log[c + d*x])/(3 
*b*d^3) + (x^3*Log[c + d*x])/(3*b) - (a*Log[-((d*(a^(1/3) + b^(1/3)*x))/(b 
^(1/3)*c - a^(1/3)*d))]*Log[c + d*x])/(3*b^2) - (a*Log[-(((-1)^(2/3)*d*(a^ 
(1/3) - (-1)^(1/3)*b^(1/3)*x))/(b^(1/3)*c - (-1)^(2/3)*a^(1/3)*d))]*Log[c 
+ d*x])/(3*b^2) - (a*Log[((-1)^(1/3)*d*(a^(1/3) + (-1)^(2/3)*b^(1/3)*x))/( 
b^(1/3)*c + (-1)^(1/3)*a^(1/3)*d)]*Log[c + d*x])/(3*b^2) - (a*PolyLog[2, ( 
b^(1/3)*(c + d*x))/(b^(1/3)*c - a^(1/3)*d)])/(3*b^2) - (a*PolyLog[2, (b^(1 
/3)*(c + d*x))/(b^(1/3)*c + (-1)^(1/3)*a^(1/3)*d)])/(3*b^2) - (a*PolyLog[2 
, (b^(1/3)*(c + d*x))/(b^(1/3)*c - (-1)^(2/3)*a^(1/3)*d)])/(3*b^2)
 

Rubi [A] (verified)

Time = 1.32 (sec) , antiderivative size = 371, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {2863, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^5 \log (c+d x)}{a+b x^3} \, dx\)

\(\Big \downarrow \) 2863

\(\displaystyle \int \left (\frac {x^2 \log (c+d x)}{b}-\frac {a x^2 \log (c+d x)}{b \left (a+b x^3\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {a \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right )}{3 b^2}-\frac {a \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c+\sqrt [3]{-1} \sqrt [3]{a} d}\right )}{3 b^2}-\frac {a \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c-(-1)^{2/3} \sqrt [3]{a} d}\right )}{3 b^2}-\frac {a \log (c+d x) \log \left (-\frac {d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right )}{3 b^2}-\frac {a \log (c+d x) \log \left (-\frac {d \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} c-(-1)^{2/3} \sqrt [3]{a} d}\right )}{3 b^2}-\frac {a \log (c+d x) \log \left (\frac {\sqrt [3]{-1} d \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}{\sqrt [3]{-1} \sqrt [3]{a} d+\sqrt [3]{b} c}\right )}{3 b^2}+\frac {c^3 \log (c+d x)}{3 b d^3}-\frac {c^2 x}{3 b d^2}+\frac {x^3 \log (c+d x)}{3 b}+\frac {c x^2}{6 b d}-\frac {x^3}{9 b}\)

Input:

Int[(x^5*Log[c + d*x])/(a + b*x^3),x]
 

Output:

-1/3*(c^2*x)/(b*d^2) + (c*x^2)/(6*b*d) - x^3/(9*b) + (c^3*Log[c + d*x])/(3 
*b*d^3) + (x^3*Log[c + d*x])/(3*b) - (a*Log[-((d*(a^(1/3) + b^(1/3)*x))/(b 
^(1/3)*c - a^(1/3)*d))]*Log[c + d*x])/(3*b^2) - (a*Log[-((d*((-1)^(2/3)*a^ 
(1/3) + b^(1/3)*x))/(b^(1/3)*c - (-1)^(2/3)*a^(1/3)*d))]*Log[c + d*x])/(3* 
b^2) - (a*Log[((-1)^(1/3)*d*(a^(1/3) + (-1)^(2/3)*b^(1/3)*x))/(b^(1/3)*c + 
 (-1)^(1/3)*a^(1/3)*d)]*Log[c + d*x])/(3*b^2) - (a*PolyLog[2, (b^(1/3)*(c 
+ d*x))/(b^(1/3)*c - a^(1/3)*d)])/(3*b^2) - (a*PolyLog[2, (b^(1/3)*(c + d* 
x))/(b^(1/3)*c + (-1)^(1/3)*a^(1/3)*d)])/(3*b^2) - (a*PolyLog[2, (b^(1/3)* 
(c + d*x))/(b^(1/3)*c - (-1)^(2/3)*a^(1/3)*d)])/(3*b^2)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2863
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_)) 
^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a 
 + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a, b, c 
, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.64 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.41

method result size
risch \(-\frac {c^{2} x}{3 b \,d^{2}}-\frac {11 c^{3}}{18 d^{3} b}+\frac {c \,x^{2}}{6 b d}+\frac {x^{3} \ln \left (d x +c \right )}{3 b}+\frac {c^{3} \ln \left (d x +c \right )}{3 b \,d^{3}}-\frac {x^{3}}{9 b}-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 b c \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +a \,d^{3}-b \,c^{3}\right )}{\sum }\left (\ln \left (d x +c \right ) \ln \left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )\right )\right ) a}{3 b^{2}}\) \(153\)
derivativedivides \(\frac {\frac {\left (c^{2} \left (\left (d x +c \right ) \ln \left (d x +c \right )-d x -c \right )-2 \left (\frac {\left (d x +c \right )^{2} \ln \left (d x +c \right )}{2}-\frac {\left (d x +c \right )^{2}}{4}\right ) c +\frac {\left (d x +c \right )^{3} \ln \left (d x +c \right )}{3}-\frac {\left (d x +c \right )^{3}}{9}\right ) d^{3}}{b}-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 b c \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +a \,d^{3}-b \,c^{3}\right )}{\sum }\left (\ln \left (d x +c \right ) \ln \left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )\right )\right ) a \,d^{6}}{3 b^{2}}}{d^{6}}\) \(170\)
default \(\frac {\frac {\left (c^{2} \left (\left (d x +c \right ) \ln \left (d x +c \right )-d x -c \right )-2 \left (\frac {\left (d x +c \right )^{2} \ln \left (d x +c \right )}{2}-\frac {\left (d x +c \right )^{2}}{4}\right ) c +\frac {\left (d x +c \right )^{3} \ln \left (d x +c \right )}{3}-\frac {\left (d x +c \right )^{3}}{9}\right ) d^{3}}{b}-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 b c \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +a \,d^{3}-b \,c^{3}\right )}{\sum }\left (\ln \left (d x +c \right ) \ln \left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )\right )\right ) a \,d^{6}}{3 b^{2}}}{d^{6}}\) \(170\)
parts \(\frac {x^{3} \ln \left (d x +c \right )}{3 b}-\frac {\ln \left (d x +c \right ) a \ln \left (b \,x^{3}+a \right )}{3 b^{2}}-\frac {d \left (\frac {x^{3}}{3 b d}-\frac {x^{2} c}{2 b \,d^{2}}+\frac {x \,c^{2}}{b \,d^{3}}-\frac {c^{3} \ln \left (d x +c \right )}{b \,d^{4}}-\frac {a \ln \left (d x +c \right ) \ln \left (b \,x^{3}+a \right )}{b^{2} d}+\frac {a \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 b c \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +a \,d^{3}-b \,c^{3}\right )}{\sum }\left (\ln \left (d x +c \right ) \ln \left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )\right )\right )}{b^{2} d}\right )}{3}\) \(193\)

Input:

int(x^5*ln(d*x+c)/(b*x^3+a),x,method=_RETURNVERBOSE)
 

Output:

-1/3*c^2*x/b/d^2-11/18/d^3/b*c^3+1/6*c*x^2/b/d+1/3*x^3*ln(d*x+c)/b+1/3*c^3 
*ln(d*x+c)/b/d^3-1/9*x^3/b-1/3/b^2*sum(ln(d*x+c)*ln((-d*x+_R1-c)/_R1)+dilo 
g((-d*x+_R1-c)/_R1),_R1=RootOf(_Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d^3-b*c^3))* 
a
 

Fricas [F]

\[ \int \frac {x^5 \log (c+d x)}{a+b x^3} \, dx=\int { \frac {x^{5} \log \left (d x + c\right )}{b x^{3} + a} \,d x } \] Input:

integrate(x^5*log(d*x+c)/(b*x^3+a),x, algorithm="fricas")
 

Output:

integral(x^5*log(d*x + c)/(b*x^3 + a), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^5 \log (c+d x)}{a+b x^3} \, dx=\text {Timed out} \] Input:

integrate(x**5*ln(d*x+c)/(b*x**3+a),x)
                                                                                    
                                                                                    
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^5 \log (c+d x)}{a+b x^3} \, dx=\int { \frac {x^{5} \log \left (d x + c\right )}{b x^{3} + a} \,d x } \] Input:

integrate(x^5*log(d*x+c)/(b*x^3+a),x, algorithm="maxima")
 

Output:

integrate(x^5*log(d*x + c)/(b*x^3 + a), x)
 

Giac [F]

\[ \int \frac {x^5 \log (c+d x)}{a+b x^3} \, dx=\int { \frac {x^{5} \log \left (d x + c\right )}{b x^{3} + a} \,d x } \] Input:

integrate(x^5*log(d*x+c)/(b*x^3+a),x, algorithm="giac")
 

Output:

integrate(x^5*log(d*x + c)/(b*x^3 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^5 \log (c+d x)}{a+b x^3} \, dx=\int \frac {x^5\,\ln \left (c+d\,x\right )}{b\,x^3+a} \,d x \] Input:

int((x^5*log(c + d*x))/(a + b*x^3),x)
 

Output:

int((x^5*log(c + d*x))/(a + b*x^3), x)
 

Reduce [F]

\[ \int \frac {x^5 \log (c+d x)}{a+b x^3} \, dx=\frac {18 \left (\int \frac {\mathrm {log}\left (d x +c \right )}{b d \,x^{4}+b c \,x^{3}+a d x +a c}d x \right ) a^{2} d^{4}-18 \left (\int \frac {\mathrm {log}\left (d x +c \right ) x^{2}}{b d \,x^{4}+b c \,x^{3}+a d x +a c}d x \right ) a b c \,d^{3}-9 \mathrm {log}\left (d x +c \right )^{2} a \,d^{3}+6 \,\mathrm {log}\left (d x +c \right ) b \,c^{3}+6 \,\mathrm {log}\left (d x +c \right ) b \,d^{3} x^{3}-6 b \,c^{2} d x +3 b c \,d^{2} x^{2}-2 b \,d^{3} x^{3}}{18 b^{2} d^{3}} \] Input:

int(x^5*log(d*x+c)/(b*x^3+a),x)
 

Output:

(18*int(log(c + d*x)/(a*c + a*d*x + b*c*x**3 + b*d*x**4),x)*a**2*d**4 - 18 
*int((log(c + d*x)*x**2)/(a*c + a*d*x + b*c*x**3 + b*d*x**4),x)*a*b*c*d**3 
 - 9*log(c + d*x)**2*a*d**3 + 6*log(c + d*x)*b*c**3 + 6*log(c + d*x)*b*d** 
3*x**3 - 6*b*c**2*d*x + 3*b*c*d**2*x**2 - 2*b*d**3*x**3)/(18*b**2*d**3)