\(\int \frac {x^2 \log (c+d x)}{a+b x^3} \, dx\) [284]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 292 \[ \int \frac {x^2 \log (c+d x)}{a+b x^3} \, dx=\frac {\log \left (-\frac {d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right ) \log (c+d x)}{3 b}+\frac {\log \left (-\frac {d \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} c-(-1)^{2/3} \sqrt [3]{a} d}\right ) \log (c+d x)}{3 b}+\frac {\log \left (\frac {\sqrt [3]{-1} d \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}{\sqrt [3]{b} c+\sqrt [3]{-1} \sqrt [3]{a} d}\right ) \log (c+d x)}{3 b}+\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right )}{3 b}+\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c+\sqrt [3]{-1} \sqrt [3]{a} d}\right )}{3 b}+\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c-(-1)^{2/3} \sqrt [3]{a} d}\right )}{3 b} \] Output:

1/3*ln(-d*(a^(1/3)+b^(1/3)*x)/(b^(1/3)*c-a^(1/3)*d))*ln(d*x+c)/b+1/3*ln(-d 
*((-1)^(2/3)*a^(1/3)+b^(1/3)*x)/(b^(1/3)*c-(-1)^(2/3)*a^(1/3)*d))*ln(d*x+c 
)/b+1/3*ln((-1)^(1/3)*d*(a^(1/3)+(-1)^(2/3)*b^(1/3)*x)/(b^(1/3)*c+(-1)^(1/ 
3)*a^(1/3)*d))*ln(d*x+c)/b+1/3*polylog(2,b^(1/3)*(d*x+c)/(b^(1/3)*c-a^(1/3 
)*d))/b+1/3*polylog(2,b^(1/3)*(d*x+c)/(b^(1/3)*c+(-1)^(1/3)*a^(1/3)*d))/b+ 
1/3*polylog(2,b^(1/3)*(d*x+c)/(b^(1/3)*c-(-1)^(2/3)*a^(1/3)*d))/b
 

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 297, normalized size of antiderivative = 1.02 \[ \int \frac {x^2 \log (c+d x)}{a+b x^3} \, dx=\frac {\log \left (-\frac {d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right ) \log (c+d x)}{3 b}+\frac {\log \left (-\frac {(-1)^{2/3} d \left (\sqrt [3]{a}-\sqrt [3]{-1} \sqrt [3]{b} x\right )}{\sqrt [3]{b} c-(-1)^{2/3} \sqrt [3]{a} d}\right ) \log (c+d x)}{3 b}+\frac {\log \left (\frac {\sqrt [3]{-1} d \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}{\sqrt [3]{b} c+\sqrt [3]{-1} \sqrt [3]{a} d}\right ) \log (c+d x)}{3 b}+\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right )}{3 b}+\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c+\sqrt [3]{-1} \sqrt [3]{a} d}\right )}{3 b}+\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c-(-1)^{2/3} \sqrt [3]{a} d}\right )}{3 b} \] Input:

Integrate[(x^2*Log[c + d*x])/(a + b*x^3),x]
 

Output:

(Log[-((d*(a^(1/3) + b^(1/3)*x))/(b^(1/3)*c - a^(1/3)*d))]*Log[c + d*x])/( 
3*b) + (Log[-(((-1)^(2/3)*d*(a^(1/3) - (-1)^(1/3)*b^(1/3)*x))/(b^(1/3)*c - 
 (-1)^(2/3)*a^(1/3)*d))]*Log[c + d*x])/(3*b) + (Log[((-1)^(1/3)*d*(a^(1/3) 
 + (-1)^(2/3)*b^(1/3)*x))/(b^(1/3)*c + (-1)^(1/3)*a^(1/3)*d)]*Log[c + d*x] 
)/(3*b) + PolyLog[2, (b^(1/3)*(c + d*x))/(b^(1/3)*c - a^(1/3)*d)]/(3*b) + 
PolyLog[2, (b^(1/3)*(c + d*x))/(b^(1/3)*c + (-1)^(1/3)*a^(1/3)*d)]/(3*b) + 
 PolyLog[2, (b^(1/3)*(c + d*x))/(b^(1/3)*c - (-1)^(2/3)*a^(1/3)*d)]/(3*b)
 

Rubi [A] (verified)

Time = 0.88 (sec) , antiderivative size = 292, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {2863, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \log (c+d x)}{a+b x^3} \, dx\)

\(\Big \downarrow \) 2863

\(\displaystyle \int \left (\frac {\log (c+d x)}{3 b^{2/3} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}+\frac {\log (c+d x)}{3 b^{2/3} \left (\sqrt [3]{b} x-\sqrt [3]{-1} \sqrt [3]{a}\right )}+\frac {\log (c+d x)}{3 b^{2/3} \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right )}{3 b}+\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c+\sqrt [3]{-1} \sqrt [3]{a} d}\right )}{3 b}+\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c-(-1)^{2/3} \sqrt [3]{a} d}\right )}{3 b}+\frac {\log (c+d x) \log \left (-\frac {d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right )}{3 b}+\frac {\log (c+d x) \log \left (-\frac {d \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} c-(-1)^{2/3} \sqrt [3]{a} d}\right )}{3 b}+\frac {\log (c+d x) \log \left (\frac {\sqrt [3]{-1} d \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}{\sqrt [3]{-1} \sqrt [3]{a} d+\sqrt [3]{b} c}\right )}{3 b}\)

Input:

Int[(x^2*Log[c + d*x])/(a + b*x^3),x]
 

Output:

(Log[-((d*(a^(1/3) + b^(1/3)*x))/(b^(1/3)*c - a^(1/3)*d))]*Log[c + d*x])/( 
3*b) + (Log[-((d*((-1)^(2/3)*a^(1/3) + b^(1/3)*x))/(b^(1/3)*c - (-1)^(2/3) 
*a^(1/3)*d))]*Log[c + d*x])/(3*b) + (Log[((-1)^(1/3)*d*(a^(1/3) + (-1)^(2/ 
3)*b^(1/3)*x))/(b^(1/3)*c + (-1)^(1/3)*a^(1/3)*d)]*Log[c + d*x])/(3*b) + P 
olyLog[2, (b^(1/3)*(c + d*x))/(b^(1/3)*c - a^(1/3)*d)]/(3*b) + PolyLog[2, 
(b^(1/3)*(c + d*x))/(b^(1/3)*c + (-1)^(1/3)*a^(1/3)*d)]/(3*b) + PolyLog[2, 
 (b^(1/3)*(c + d*x))/(b^(1/3)*c - (-1)^(2/3)*a^(1/3)*d)]/(3*b)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2863
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_)) 
^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a 
 + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a, b, c 
, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.40 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.26

method result size
derivativedivides \(\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 b c \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +a \,d^{3}-b \,c^{3}\right )}{\sum }\left (\ln \left (d x +c \right ) \ln \left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )\right )}{3 b}\) \(77\)
default \(\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 b c \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +a \,d^{3}-b \,c^{3}\right )}{\sum }\left (\ln \left (d x +c \right ) \ln \left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )\right )}{3 b}\) \(77\)
risch \(\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 b c \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +a \,d^{3}-b \,c^{3}\right )}{\sum }\left (\ln \left (d x +c \right ) \ln \left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )\right )}{3 b}\) \(77\)
parts \(\frac {\ln \left (d x +c \right ) \ln \left (b \,x^{3}+a \right )}{3 b}-\frac {d \left (\frac {\ln \left (d x +c \right ) \ln \left (b \,x^{3}+a \right )}{d}-\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 b c \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +a \,d^{3}-b \,c^{3}\right )}{\sum }\left (\ln \left (d x +c \right ) \ln \left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )\right )}{d}\right )}{3 b}\) \(122\)

Input:

int(x^2*ln(d*x+c)/(b*x^3+a),x,method=_RETURNVERBOSE)
 

Output:

1/3/b*sum(ln(d*x+c)*ln((-d*x+_R1-c)/_R1)+dilog((-d*x+_R1-c)/_R1),_R1=RootO 
f(_Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d^3-b*c^3))
 

Fricas [F]

\[ \int \frac {x^2 \log (c+d x)}{a+b x^3} \, dx=\int { \frac {x^{2} \log \left (d x + c\right )}{b x^{3} + a} \,d x } \] Input:

integrate(x^2*log(d*x+c)/(b*x^3+a),x, algorithm="fricas")
 

Output:

integral(x^2*log(d*x + c)/(b*x^3 + a), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^2 \log (c+d x)}{a+b x^3} \, dx=\text {Timed out} \] Input:

integrate(x**2*ln(d*x+c)/(b*x**3+a),x)
                                                                                    
                                                                                    
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^2 \log (c+d x)}{a+b x^3} \, dx=\int { \frac {x^{2} \log \left (d x + c\right )}{b x^{3} + a} \,d x } \] Input:

integrate(x^2*log(d*x+c)/(b*x^3+a),x, algorithm="maxima")
 

Output:

integrate(x^2*log(d*x + c)/(b*x^3 + a), x)
 

Giac [F]

\[ \int \frac {x^2 \log (c+d x)}{a+b x^3} \, dx=\int { \frac {x^{2} \log \left (d x + c\right )}{b x^{3} + a} \,d x } \] Input:

integrate(x^2*log(d*x+c)/(b*x^3+a),x, algorithm="giac")
 

Output:

integrate(x^2*log(d*x + c)/(b*x^3 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \log (c+d x)}{a+b x^3} \, dx=\int \frac {x^2\,\ln \left (c+d\,x\right )}{b\,x^3+a} \,d x \] Input:

int((x^2*log(c + d*x))/(a + b*x^3),x)
 

Output:

int((x^2*log(c + d*x))/(a + b*x^3), x)
 

Reduce [F]

\[ \int \frac {x^2 \log (c+d x)}{a+b x^3} \, dx=\int \frac {\mathrm {log}\left (d x +c \right ) x^{2}}{b \,x^{3}+a}d x \] Input:

int(x^2*log(d*x+c)/(b*x^3+a),x)
 

Output:

int((log(c + d*x)*x**2)/(a + b*x**3),x)