3.7 Integrals 601 to 646

\(\int \genfrac {}{}{}{}{1}{(e \cos (c+d x))^{7/2} (a+b \sin (c+d x))^3} \, dx\) [601]
\(\int \genfrac {}{}{}{}{(e \cos (c+d x))^{15/2}}{(a+b \sin (c+d x))^4} \, dx\) [602]
\(\int \genfrac {}{}{}{}{(e \cos (c+d x))^{13/2}}{(a+b \sin (c+d x))^4} \, dx\) [603]
\(\int \genfrac {}{}{}{}{(e \cos (c+d x))^{11/2}}{(a+b \sin (c+d x))^4} \, dx\) [604]
\(\int \genfrac {}{}{}{}{(e \cos (c+d x))^{9/2}}{(a+b \sin (c+d x))^4} \, dx\) [605]
\(\int \genfrac {}{}{}{}{(e \cos (c+d x))^{7/2}}{(a+b \sin (c+d x))^4} \, dx\) [606]
\(\int \genfrac {}{}{}{}{(e \cos (c+d x))^{5/2}}{(a+b \sin (c+d x))^4} \, dx\) [607]
\(\int \genfrac {}{}{}{}{(e \cos (c+d x))^{3/2}}{(a+b \sin (c+d x))^4} \, dx\) [608]
\(\int \genfrac {}{}{}{}{\sqrt {e \cos (c+d x)}}{(a+b \sin (c+d x))^4} \, dx\) [609]
\(\int \genfrac {}{}{}{}{1}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))^4} \, dx\) [610]
\(\int \genfrac {}{}{}{}{1}{(e \cos (c+d x))^{3/2} (a+b \sin (c+d x))^4} \, dx\) [611]
\(\int \genfrac {}{}{}{}{1}{\sqrt {c \cos (e+f x)} \sqrt {a+b \sin (e+f x)}} \, dx\) [612]
\(\int (e \cos (c+d x))^p (a+b \sin (c+d x))^3 \, dx\) [613]
\(\int (e \cos (c+d x))^p (a+b \sin (c+d x))^2 \, dx\) [614]
\(\int (e \cos (c+d x))^p (a+b \sin (c+d x)) \, dx\) [615]
\(\int \genfrac {}{}{}{}{(e \cos (c+d x))^p}{a+b \sin (c+d x)} \, dx\) [616]
\(\int \genfrac {}{}{}{}{(e \cos (c+d x))^p}{(a+b \sin (c+d x))^2} \, dx\) [617]
\(\int \genfrac {}{}{}{}{(e \cos (c+d x))^p}{(a+b \sin (c+d x))^3} \, dx\) [618]
\(\int (e \cos (c+d x))^p (a+b \sin (c+d x))^{3/2} \, dx\) [619]
\(\int (e \cos (c+d x))^p \sqrt {a+b \sin (c+d x)} \, dx\) [620]
\(\int \genfrac {}{}{}{}{(e \cos (c+d x))^p}{\sqrt {a+b \sin (c+d x)}} \, dx\) [621]
\(\int \genfrac {}{}{}{}{(e \cos (c+d x))^p}{(a+b \sin (c+d x))^{3/2}} \, dx\) [622]
\(\int \genfrac {}{}{}{}{(e \cos (c+d x))^p}{(a+b \sin (c+d x))^{5/2}} \, dx\) [623]
\(\int \cos ^7(c+d x) (a+b \sin (c+d x))^m \, dx\) [624]
\(\int \cos ^5(c+d x) (a+b \sin (c+d x))^m \, dx\) [625]
\(\int \cos ^3(c+d x) (a+b \sin (c+d x))^m \, dx\) [626]
\(\int \cos (c+d x) (a+b \sin (c+d x))^m \, dx\) [627]
\(\int \sec (c+d x) (a+b \sin (c+d x))^m \, dx\) [628]
\(\int \sec ^3(c+d x) (a+b \sin (c+d x))^m \, dx\) [629]
\(\int \sec ^5(c+d x) (a+b \sin (c+d x))^m \, dx\) [630]
\(\int \cos ^4(c+d x) (a+b \sin (c+d x))^m \, dx\) [631]
\(\int \cos ^2(c+d x) (a+b \sin (c+d x))^m \, dx\) [632]
\(\int \sec ^2(c+d x) (a+b \sin (c+d x))^m \, dx\) [633]
\(\int \sec ^4(c+d x) (a+b \sin (c+d x))^m \, dx\) [634]
\(\int (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))^m \, dx\) [635]
\(\int (e \cos (c+d x))^{3/2} (a+b \sin (c+d x))^m \, dx\) [636]
\(\int \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))^m \, dx\) [637]
\(\int \genfrac {}{}{}{}{(a+b \sin (c+d x))^m}{\sqrt {e \cos (c+d x)}} \, dx\) [638]
\(\int \genfrac {}{}{}{}{(a+b \sin (c+d x))^m}{(e \cos (c+d x))^{3/2}} \, dx\) [639]
\(\int (e \cos (c+d x))^p (a+b \sin (c+d x))^m \, dx\) [640]
\(\int (e \cos (c+d x))^{-3-m} (a+b \sin (c+d x))^m \, dx\) [641]
\(\int (e \cos (c+d x))^{-2-m} (a+b \sin (c+d x))^m \, dx\) [642]
\(\int (e \cos (c+d x))^{-1-m} (a+b \sin (c+d x))^m \, dx\) [643]
\(\int (e \cos (c+d x))^{-m} (a+b \sin (c+d x))^m \, dx\) [644]
\(\int (e \cos (c+d x))^{1-m} (a+b \sin (c+d x))^m \, dx\) [645]
\(\int (e \cos (c+d x))^{2-m} (a+b \sin (c+d x))^m \, dx\) [646]