\(\int (d \csc (e+f x))^n (a+b \sin (e+f x)) \, dx\) [231]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 149 \[ \int (d \csc (e+f x))^n (a+b \sin (e+f x)) \, dx=\frac {a d \cos (e+f x) (d \csc (e+f x))^{-1+n} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1-n}{2},\frac {3-n}{2},\sin ^2(e+f x)\right )}{f (1-n) \sqrt {\cos ^2(e+f x)}}+\frac {b d^2 \cos (e+f x) (d \csc (e+f x))^{-2+n} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2-n}{2},\frac {4-n}{2},\sin ^2(e+f x)\right )}{f (2-n) \sqrt {\cos ^2(e+f x)}} \] Output:

a*d*cos(f*x+e)*(d*csc(f*x+e))^(-1+n)*hypergeom([1/2, 1/2-1/2*n],[3/2-1/2*n 
],sin(f*x+e)^2)/f/(1-n)/(cos(f*x+e)^2)^(1/2)+b*d^2*cos(f*x+e)*(d*csc(f*x+e 
))^(-2+n)*hypergeom([1/2, 1-1/2*n],[2-1/2*n],sin(f*x+e)^2)/f/(2-n)/(cos(f* 
x+e)^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.81 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.70 \[ \int (d \csc (e+f x))^n (a+b \sin (e+f x)) \, dx=-\frac {d \cos (e+f x) (d \csc (e+f x))^{-1+n} \sin ^2(e+f x)^{\frac {1}{2} (-1+n)} \left (a \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1+n}{2},\frac {3}{2},\cos ^2(e+f x)\right )+b \csc (e+f x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n}{2},\frac {3}{2},\cos ^2(e+f x)\right ) \sqrt {\sin ^2(e+f x)}\right )}{f} \] Input:

Integrate[(d*Csc[e + f*x])^n*(a + b*Sin[e + f*x]),x]
 

Output:

-((d*Cos[e + f*x]*(d*Csc[e + f*x])^(-1 + n)*(Sin[e + f*x]^2)^((-1 + n)/2)* 
(a*Hypergeometric2F1[1/2, (1 + n)/2, 3/2, Cos[e + f*x]^2] + b*Csc[e + f*x] 
*Hypergeometric2F1[1/2, n/2, 3/2, Cos[e + f*x]^2]*Sqrt[Sin[e + f*x]^2]))/f 
)
 

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.99, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {3042, 3717, 3042, 4274, 3042, 4259, 3042, 3122}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a+b \sin (e+f x)) (d \csc (e+f x))^n \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a+b \sin (e+f x)) (d \csc (e+f x))^ndx\)

\(\Big \downarrow \) 3717

\(\displaystyle d \int (d \csc (e+f x))^{n-1} (b+a \csc (e+f x))dx\)

\(\Big \downarrow \) 3042

\(\displaystyle d \int (d \csc (e+f x))^{n-1} (b+a \csc (e+f x))dx\)

\(\Big \downarrow \) 4274

\(\displaystyle d \left (\frac {a \int (d \csc (e+f x))^ndx}{d}+b \int (d \csc (e+f x))^{n-1}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle d \left (\frac {a \int (d \csc (e+f x))^ndx}{d}+b \int (d \csc (e+f x))^{n-1}dx\right )\)

\(\Big \downarrow \) 4259

\(\displaystyle d \left (\frac {a \left (\frac {\sin (e+f x)}{d}\right )^n (d \csc (e+f x))^n \int \left (\frac {\sin (e+f x)}{d}\right )^{-n}dx}{d}+b \left (\frac {\sin (e+f x)}{d}\right )^n (d \csc (e+f x))^n \int \left (\frac {\sin (e+f x)}{d}\right )^{1-n}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle d \left (\frac {a \left (\frac {\sin (e+f x)}{d}\right )^n (d \csc (e+f x))^n \int \left (\frac {\sin (e+f x)}{d}\right )^{-n}dx}{d}+b \left (\frac {\sin (e+f x)}{d}\right )^n (d \csc (e+f x))^n \int \left (\frac {\sin (e+f x)}{d}\right )^{1-n}dx\right )\)

\(\Big \downarrow \) 3122

\(\displaystyle d \left (\frac {a \cos (e+f x) (d \csc (e+f x))^{n-1} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1-n}{2},\frac {3-n}{2},\sin ^2(e+f x)\right )}{f (1-n) \sqrt {\cos ^2(e+f x)}}+\frac {b d \cos (e+f x) (d \csc (e+f x))^{n-2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2-n}{2},\frac {4-n}{2},\sin ^2(e+f x)\right )}{f (2-n) \sqrt {\cos ^2(e+f x)}}\right )\)

Input:

Int[(d*Csc[e + f*x])^n*(a + b*Sin[e + f*x]),x]
 

Output:

d*((a*Cos[e + f*x]*(d*Csc[e + f*x])^(-1 + n)*Hypergeometric2F1[1/2, (1 - n 
)/2, (3 - n)/2, Sin[e + f*x]^2])/(f*(1 - n)*Sqrt[Cos[e + f*x]^2]) + (b*d*C 
os[e + f*x]*(d*Csc[e + f*x])^(-2 + n)*Hypergeometric2F1[1/2, (2 - n)/2, (4 
 - n)/2, Sin[e + f*x]^2])/(f*(2 - n)*Sqrt[Cos[e + f*x]^2]))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3122
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2 
F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n}, x] 
 &&  !IntegerQ[2*n]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4259
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^(n - 1)*((Sin[c + d*x]/b)^(n - 1)   Int[1/(Sin[c + d*x]/b)^n, x]), x] /; 
FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 
Maple [F]

\[\int \left (d \csc \left (f x +e \right )\right )^{n} \left (a +b \sin \left (f x +e \right )\right )d x\]

Input:

int((d*csc(f*x+e))^n*(a+b*sin(f*x+e)),x)
 

Output:

int((d*csc(f*x+e))^n*(a+b*sin(f*x+e)),x)
 

Fricas [F]

\[ \int (d \csc (e+f x))^n (a+b \sin (e+f x)) \, dx=\int { {\left (b \sin \left (f x + e\right ) + a\right )} \left (d \csc \left (f x + e\right )\right )^{n} \,d x } \] Input:

integrate((d*csc(f*x+e))^n*(a+b*sin(f*x+e)),x, algorithm="fricas")
 

Output:

integral((b*sin(f*x + e) + a)*(d*csc(f*x + e))^n, x)
 

Sympy [F]

\[ \int (d \csc (e+f x))^n (a+b \sin (e+f x)) \, dx=\int \left (d \csc {\left (e + f x \right )}\right )^{n} \left (a + b \sin {\left (e + f x \right )}\right )\, dx \] Input:

integrate((d*csc(f*x+e))**n*(a+b*sin(f*x+e)),x)
 

Output:

Integral((d*csc(e + f*x))**n*(a + b*sin(e + f*x)), x)
 

Maxima [F]

\[ \int (d \csc (e+f x))^n (a+b \sin (e+f x)) \, dx=\int { {\left (b \sin \left (f x + e\right ) + a\right )} \left (d \csc \left (f x + e\right )\right )^{n} \,d x } \] Input:

integrate((d*csc(f*x+e))^n*(a+b*sin(f*x+e)),x, algorithm="maxima")
 

Output:

integrate((b*sin(f*x + e) + a)*(d*csc(f*x + e))^n, x)
 

Giac [F]

\[ \int (d \csc (e+f x))^n (a+b \sin (e+f x)) \, dx=\int { {\left (b \sin \left (f x + e\right ) + a\right )} \left (d \csc \left (f x + e\right )\right )^{n} \,d x } \] Input:

integrate((d*csc(f*x+e))^n*(a+b*sin(f*x+e)),x, algorithm="giac")
 

Output:

integrate((b*sin(f*x + e) + a)*(d*csc(f*x + e))^n, x)
 

Mupad [F(-1)]

Timed out. \[ \int (d \csc (e+f x))^n (a+b \sin (e+f x)) \, dx=\int {\left (\frac {d}{\sin \left (e+f\,x\right )}\right )}^n\,\left (a+b\,\sin \left (e+f\,x\right )\right ) \,d x \] Input:

int((d/sin(e + f*x))^n*(a + b*sin(e + f*x)),x)
 

Output:

int((d/sin(e + f*x))^n*(a + b*sin(e + f*x)), x)
 

Reduce [F]

\[ \int (d \csc (e+f x))^n (a+b \sin (e+f x)) \, dx=d^{n} \left (\left (\int \csc \left (f x +e \right )^{n}d x \right ) a +\left (\int \csc \left (f x +e \right )^{n} \sin \left (f x +e \right )d x \right ) b \right ) \] Input:

int((d*csc(f*x+e))^n*(a+b*sin(f*x+e)),x)
 

Output:

d**n*(int(csc(e + f*x)**n,x)*a + int(csc(e + f*x)**n*sin(e + f*x),x)*b)