\(\int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{11/2}} \, dx\) [387]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 30, antiderivative size = 88 \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=\frac {\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{10 f (c-c \sin (e+f x))^{11/2}}+\frac {\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{80 c f (c-c \sin (e+f x))^{9/2}} \] Output:

1/10*cos(f*x+e)*(a+a*sin(f*x+e))^(7/2)/f/(c-c*sin(f*x+e))^(11/2)+1/80*cos( 
f*x+e)*(a+a*sin(f*x+e))^(7/2)/c/f/(c-c*sin(f*x+e))^(9/2)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(331\) vs. \(2(88)=176\).

Time = 11.82 (sec) , antiderivative size = 331, normalized size of antiderivative = 3.76 \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=\frac {8 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) (a (1+\sin (e+f x)))^{7/2}}{5 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (c-c \sin (e+f x))^{11/2}}-\frac {3 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 (a (1+\sin (e+f x)))^{7/2}}{f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (c-c \sin (e+f x))^{11/2}}+\frac {2 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^5 (a (1+\sin (e+f x)))^{7/2}}{f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (c-c \sin (e+f x))^{11/2}}-\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (a (1+\sin (e+f x)))^{7/2}}{2 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (c-c \sin (e+f x))^{11/2}} \] Input:

Integrate[(a + a*Sin[e + f*x])^(7/2)/(c - c*Sin[e + f*x])^(11/2),x]
 

Output:

(8*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(a*(1 + Sin[e + f*x]))^(7/2))/(5* 
f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^7*(c - c*Sin[e + f*x])^(11/2)) - ( 
3*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*(a*(1 + Sin[e + f*x]))^(7/2))/(f 
*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^7*(c - c*Sin[e + f*x])^(11/2)) + (2 
*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^5*(a*(1 + Sin[e + f*x]))^(7/2))/(f* 
(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^7*(c - c*Sin[e + f*x])^(11/2)) - ((C 
os[(e + f*x)/2] - Sin[(e + f*x)/2])^7*(a*(1 + Sin[e + f*x]))^(7/2))/(2*f*( 
Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^7*(c - c*Sin[e + f*x])^(11/2))
 

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {3042, 3222, 3042, 3221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^{7/2}}{(c-c \sin (e+f x))^{11/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^{7/2}}{(c-c \sin (e+f x))^{11/2}}dx\)

\(\Big \downarrow \) 3222

\(\displaystyle \frac {\int \frac {(\sin (e+f x) a+a)^{7/2}}{(c-c \sin (e+f x))^{9/2}}dx}{10 c}+\frac {\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{10 f (c-c \sin (e+f x))^{11/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {(\sin (e+f x) a+a)^{7/2}}{(c-c \sin (e+f x))^{9/2}}dx}{10 c}+\frac {\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{10 f (c-c \sin (e+f x))^{11/2}}\)

\(\Big \downarrow \) 3221

\(\displaystyle \frac {\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{80 c f (c-c \sin (e+f x))^{9/2}}+\frac {\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{10 f (c-c \sin (e+f x))^{11/2}}\)

Input:

Int[(a + a*Sin[e + f*x])^(7/2)/(c - c*Sin[e + f*x])^(11/2),x]
 

Output:

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(10*f*(c - c*Sin[e + f*x])^(11/2 
)) + (Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(80*c*f*(c - c*Sin[e + f*x] 
)^(9/2))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3221
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*( 
(c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] /; FreeQ[{a, b, c, d, e, f, m, 
n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && Ne 
Q[m, -2^(-1)]
 

rule 3222
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*( 
(c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] + Simp[(m + n + 1)/(a*(2*m + 1) 
)   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; Free 
Q[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && 
 ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -2^(-1)] && (SumSimplerQ[m, 1] || 
!SumSimplerQ[n, 1])
 
Maple [A] (verified)

Time = 1.87 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.09

method result size
default \(\frac {\sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, a^{3} \left (\tan \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{7}+4 \tan \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{7} \sec \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}\right ) \sqrt {4}}{160 f \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, c^{5}}\) \(96\)

Input:

int((a+sin(f*x+e)*a)^(7/2)/(c-c*sin(f*x+e))^(11/2),x,method=_RETURNVERBOSE 
)
 

Output:

1/160/f*(a*sin(1/4*Pi+1/2*f*x+1/2*e)^2)^(1/2)*a^3/(c*cos(1/4*Pi+1/2*f*x+1/ 
2*e)^2)^(1/2)/c^5*(tan(1/4*Pi+1/2*f*x+1/2*e)^7+4*tan(1/4*Pi+1/2*f*x+1/2*e) 
^7*sec(1/4*Pi+1/2*f*x+1/2*e)^2)*4^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 163 vs. \(2 (76) = 152\).

Time = 0.11 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.85 \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=-\frac {{\left (5 \, a^{3} \cos \left (f x + e\right )^{2} - 6 \, a^{3} + 5 \, {\left (a^{3} \cos \left (f x + e\right )^{2} - 2 \, a^{3}\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{10 \, {\left (5 \, c^{6} f \cos \left (f x + e\right )^{5} - 20 \, c^{6} f \cos \left (f x + e\right )^{3} + 16 \, c^{6} f \cos \left (f x + e\right ) - {\left (c^{6} f \cos \left (f x + e\right )^{5} - 12 \, c^{6} f \cos \left (f x + e\right )^{3} + 16 \, c^{6} f \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )}} \] Input:

integrate((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(11/2),x, algorithm="fri 
cas")
 

Output:

-1/10*(5*a^3*cos(f*x + e)^2 - 6*a^3 + 5*(a^3*cos(f*x + e)^2 - 2*a^3)*sin(f 
*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(5*c^6*f*cos(f 
*x + e)^5 - 20*c^6*f*cos(f*x + e)^3 + 16*c^6*f*cos(f*x + e) - (c^6*f*cos(f 
*x + e)^5 - 12*c^6*f*cos(f*x + e)^3 + 16*c^6*f*cos(f*x + e))*sin(f*x + e))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=\text {Timed out} \] Input:

integrate((a+a*sin(f*x+e))**(7/2)/(c-c*sin(f*x+e))**(11/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {7}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {11}{2}}} \,d x } \] Input:

integrate((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(11/2),x, algorithm="max 
ima")
 

Output:

integrate((a*sin(f*x + e) + a)^(7/2)/(-c*sin(f*x + e) + c)^(11/2), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(11/2),x, algorithm="gia 
c")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [B] (verification not implemented)

Time = 23.87 (sec) , antiderivative size = 317, normalized size of antiderivative = 3.60 \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=\frac {\sqrt {c-c\,\sin \left (e+f\,x\right )}\,\left (\frac {a^3\,{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,112{}\mathrm {i}}{5\,c^6\,f}+\frac {a^3\,{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\sin \left (e+f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,56{}\mathrm {i}}{c^6\,f}-\frac {a^3\,{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\cos \left (2\,e+2\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,16{}\mathrm {i}}{c^6\,f}-\frac {a^3\,{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\sin \left (3\,e+3\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,8{}\mathrm {i}}{c^6\,f}\right )}{\cos \left (e+f\,x\right )\,{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,264{}\mathrm {i}-{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\cos \left (3\,e+3\,f\,x\right )\,220{}\mathrm {i}+{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\cos \left (5\,e+5\,f\,x\right )\,20{}\mathrm {i}-{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\sin \left (2\,e+2\,f\,x\right )\,330{}\mathrm {i}+{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\sin \left (4\,e+4\,f\,x\right )\,88{}\mathrm {i}-{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\sin \left (6\,e+6\,f\,x\right )\,2{}\mathrm {i}} \] Input:

int((a + a*sin(e + f*x))^(7/2)/(c - c*sin(e + f*x))^(11/2),x)
 

Output:

((c - c*sin(e + f*x))^(1/2)*((a^3*exp(e*6i + f*x*6i)*(a + a*sin(e + f*x))^ 
(1/2)*112i)/(5*c^6*f) + (a^3*exp(e*6i + f*x*6i)*sin(e + f*x)*(a + a*sin(e 
+ f*x))^(1/2)*56i)/(c^6*f) - (a^3*exp(e*6i + f*x*6i)*cos(2*e + 2*f*x)*(a + 
 a*sin(e + f*x))^(1/2)*16i)/(c^6*f) - (a^3*exp(e*6i + f*x*6i)*sin(3*e + 3* 
f*x)*(a + a*sin(e + f*x))^(1/2)*8i)/(c^6*f)))/(cos(e + f*x)*exp(e*6i + f*x 
*6i)*264i - exp(e*6i + f*x*6i)*cos(3*e + 3*f*x)*220i + exp(e*6i + f*x*6i)* 
cos(5*e + 5*f*x)*20i - exp(e*6i + f*x*6i)*sin(2*e + 2*f*x)*330i + exp(e*6i 
 + f*x*6i)*sin(4*e + 4*f*x)*88i - exp(e*6i + f*x*6i)*sin(6*e + 6*f*x)*2i)
 

Reduce [F]

\[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{11/2}} \, dx=\frac {\sqrt {c}\, \sqrt {a}\, a^{3} \left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{3}}{\sin \left (f x +e \right )^{6}-6 \sin \left (f x +e \right )^{5}+15 \sin \left (f x +e \right )^{4}-20 \sin \left (f x +e \right )^{3}+15 \sin \left (f x +e \right )^{2}-6 \sin \left (f x +e \right )+1}d x +3 \left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{2}}{\sin \left (f x +e \right )^{6}-6 \sin \left (f x +e \right )^{5}+15 \sin \left (f x +e \right )^{4}-20 \sin \left (f x +e \right )^{3}+15 \sin \left (f x +e \right )^{2}-6 \sin \left (f x +e \right )+1}d x \right )+3 \left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )}{\sin \left (f x +e \right )^{6}-6 \sin \left (f x +e \right )^{5}+15 \sin \left (f x +e \right )^{4}-20 \sin \left (f x +e \right )^{3}+15 \sin \left (f x +e \right )^{2}-6 \sin \left (f x +e \right )+1}d x \right )+\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}}{\sin \left (f x +e \right )^{6}-6 \sin \left (f x +e \right )^{5}+15 \sin \left (f x +e \right )^{4}-20 \sin \left (f x +e \right )^{3}+15 \sin \left (f x +e \right )^{2}-6 \sin \left (f x +e \right )+1}d x \right )}{c^{6}} \] Input:

int((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(11/2),x)
 

Output:

(sqrt(c)*sqrt(a)*a**3*(int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 
1)*sin(e + f*x)**3)/(sin(e + f*x)**6 - 6*sin(e + f*x)**5 + 15*sin(e + f*x) 
**4 - 20*sin(e + f*x)**3 + 15*sin(e + f*x)**2 - 6*sin(e + f*x) + 1),x) + 3 
*int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1)*sin(e + f*x)**2)/(s 
in(e + f*x)**6 - 6*sin(e + f*x)**5 + 15*sin(e + f*x)**4 - 20*sin(e + f*x)* 
*3 + 15*sin(e + f*x)**2 - 6*sin(e + f*x) + 1),x) + 3*int((sqrt(sin(e + f*x 
) + 1)*sqrt( - sin(e + f*x) + 1)*sin(e + f*x))/(sin(e + f*x)**6 - 6*sin(e 
+ f*x)**5 + 15*sin(e + f*x)**4 - 20*sin(e + f*x)**3 + 15*sin(e + f*x)**2 - 
 6*sin(e + f*x) + 1),x) + int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) 
 + 1))/(sin(e + f*x)**6 - 6*sin(e + f*x)**5 + 15*sin(e + f*x)**4 - 20*sin( 
e + f*x)**3 + 15*sin(e + f*x)**2 - 6*sin(e + f*x) + 1),x)))/c**6