\(\int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx\) [388]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 30, antiderivative size = 133 \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=\frac {\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{12 f (c-c \sin (e+f x))^{13/2}}+\frac {\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{60 c f (c-c \sin (e+f x))^{11/2}}+\frac {\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{480 c^2 f (c-c \sin (e+f x))^{9/2}} \] Output:

1/12*cos(f*x+e)*(a+a*sin(f*x+e))^(7/2)/f/(c-c*sin(f*x+e))^(13/2)+1/60*cos( 
f*x+e)*(a+a*sin(f*x+e))^(7/2)/c/f/(c-c*sin(f*x+e))^(11/2)+1/480*cos(f*x+e) 
*(a+a*sin(f*x+e))^(7/2)/c^2/f/(c-c*sin(f*x+e))^(9/2)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(335\) vs. \(2(133)=266\).

Time = 13.52 (sec) , antiderivative size = 335, normalized size of antiderivative = 2.52 \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=\frac {4 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) (a (1+\sin (e+f x)))^{7/2}}{3 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (c-c \sin (e+f x))^{13/2}}-\frac {12 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 (a (1+\sin (e+f x)))^{7/2}}{5 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (c-c \sin (e+f x))^{13/2}}+\frac {3 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^5 (a (1+\sin (e+f x)))^{7/2}}{2 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (c-c \sin (e+f x))^{13/2}}-\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (a (1+\sin (e+f x)))^{7/2}}{3 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (c-c \sin (e+f x))^{13/2}} \] Input:

Integrate[(a + a*Sin[e + f*x])^(7/2)/(c - c*Sin[e + f*x])^(13/2),x]
 

Output:

(4*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(a*(1 + Sin[e + f*x]))^(7/2))/(3* 
f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^7*(c - c*Sin[e + f*x])^(13/2)) - ( 
12*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*(a*(1 + Sin[e + f*x]))^(7/2))/( 
5*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^7*(c - c*Sin[e + f*x])^(13/2)) + 
 (3*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^5*(a*(1 + Sin[e + f*x]))^(7/2))/ 
(2*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^7*(c - c*Sin[e + f*x])^(13/2)) 
- ((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^7*(a*(1 + Sin[e + f*x]))^(7/2))/( 
3*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^7*(c - c*Sin[e + f*x])^(13/2))
 

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 3222, 3042, 3222, 3042, 3221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^{7/2}}{(c-c \sin (e+f x))^{13/2}}dx\)

\(\Big \downarrow \) 3222

\(\displaystyle \frac {\int \frac {(\sin (e+f x) a+a)^{7/2}}{(c-c \sin (e+f x))^{11/2}}dx}{6 c}+\frac {\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{12 f (c-c \sin (e+f x))^{13/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {(\sin (e+f x) a+a)^{7/2}}{(c-c \sin (e+f x))^{11/2}}dx}{6 c}+\frac {\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{12 f (c-c \sin (e+f x))^{13/2}}\)

\(\Big \downarrow \) 3222

\(\displaystyle \frac {\frac {\int \frac {(\sin (e+f x) a+a)^{7/2}}{(c-c \sin (e+f x))^{9/2}}dx}{10 c}+\frac {\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{10 f (c-c \sin (e+f x))^{11/2}}}{6 c}+\frac {\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{12 f (c-c \sin (e+f x))^{13/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {(\sin (e+f x) a+a)^{7/2}}{(c-c \sin (e+f x))^{9/2}}dx}{10 c}+\frac {\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{10 f (c-c \sin (e+f x))^{11/2}}}{6 c}+\frac {\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{12 f (c-c \sin (e+f x))^{13/2}}\)

\(\Big \downarrow \) 3221

\(\displaystyle \frac {\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{12 f (c-c \sin (e+f x))^{13/2}}+\frac {\frac {\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{80 c f (c-c \sin (e+f x))^{9/2}}+\frac {\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{10 f (c-c \sin (e+f x))^{11/2}}}{6 c}\)

Input:

Int[(a + a*Sin[e + f*x])^(7/2)/(c - c*Sin[e + f*x])^(13/2),x]
 

Output:

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(12*f*(c - c*Sin[e + f*x])^(13/2 
)) + ((Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(10*f*(c - c*Sin[e + f*x]) 
^(11/2)) + (Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(80*c*f*(c - c*Sin[e 
+ f*x])^(9/2)))/(6*c)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3221
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*( 
(c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] /; FreeQ[{a, b, c, d, e, f, m, 
n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && Ne 
Q[m, -2^(-1)]
 

rule 3222
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*( 
(c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] + Simp[(m + n + 1)/(a*(2*m + 1) 
)   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; Free 
Q[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && 
 ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -2^(-1)] && (SumSimplerQ[m, 1] || 
!SumSimplerQ[n, 1])
 
Maple [A] (verified)

Time = 1.88 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.83

method result size
default \(\frac {\tan \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{7} \sec \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4} \sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, \left (\cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}+4 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}+10\right ) a^{3} \sqrt {4}}{960 f \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, c^{6}}\) \(111\)

Input:

int((a+sin(f*x+e)*a)^(7/2)/(c-c*sin(f*x+e))^(13/2),x,method=_RETURNVERBOSE 
)
 

Output:

1/960/f*tan(1/4*Pi+1/2*f*x+1/2*e)^7*sec(1/4*Pi+1/2*f*x+1/2*e)^4*(a*sin(1/4 
*Pi+1/2*f*x+1/2*e)^2)^(1/2)*(cos(1/4*Pi+1/2*f*x+1/2*e)^4+4*cos(1/4*Pi+1/2* 
f*x+1/2*e)^2+10)*a^3/(c*cos(1/4*Pi+1/2*f*x+1/2*e)^2)^(1/2)/c^6*4^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.34 \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=\frac {{\left (15 \, a^{3} \cos \left (f x + e\right )^{2} - 18 \, a^{3} + 2 \, {\left (5 \, a^{3} \cos \left (f x + e\right )^{2} - 11 \, a^{3}\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{30 \, {\left (c^{7} f \cos \left (f x + e\right )^{7} - 18 \, c^{7} f \cos \left (f x + e\right )^{5} + 48 \, c^{7} f \cos \left (f x + e\right )^{3} - 32 \, c^{7} f \cos \left (f x + e\right ) + 2 \, {\left (3 \, c^{7} f \cos \left (f x + e\right )^{5} - 16 \, c^{7} f \cos \left (f x + e\right )^{3} + 16 \, c^{7} f \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )}} \] Input:

integrate((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(13/2),x, algorithm="fri 
cas")
 

Output:

1/30*(15*a^3*cos(f*x + e)^2 - 18*a^3 + 2*(5*a^3*cos(f*x + e)^2 - 11*a^3)*s 
in(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(c^7*f*cos 
(f*x + e)^7 - 18*c^7*f*cos(f*x + e)^5 + 48*c^7*f*cos(f*x + e)^3 - 32*c^7*f 
*cos(f*x + e) + 2*(3*c^7*f*cos(f*x + e)^5 - 16*c^7*f*cos(f*x + e)^3 + 16*c 
^7*f*cos(f*x + e))*sin(f*x + e))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=\text {Timed out} \] Input:

integrate((a+a*sin(f*x+e))**(7/2)/(c-c*sin(f*x+e))**(13/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {7}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {13}{2}}} \,d x } \] Input:

integrate((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(13/2),x, algorithm="max 
ima")
 

Output:

integrate((a*sin(f*x + e) + a)^(7/2)/(-c*sin(f*x + e) + c)^(13/2), x)
 

Giac [A] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.17 \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=\frac {{\left (20 \, a^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6} - 45 \, a^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + 36 \, a^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 10 \, a^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \sqrt {a}}{480 \, c^{\frac {13}{2}} f \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{12}} \] Input:

integrate((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(13/2),x, algorithm="gia 
c")
 

Output:

1/480*(20*a^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 
1/2*e)^6 - 45*a^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f* 
x + 1/2*e)^4 + 36*a^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/ 
2*f*x + 1/2*e)^2 - 10*a^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))*sqrt(a)/(c^ 
(13/2)*f*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e 
)^12)
 

Mupad [B] (verification not implemented)

Time = 20.80 (sec) , antiderivative size = 330, normalized size of antiderivative = 2.48 \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=-\frac {\sqrt {c-c\,\sin \left (e+f\,x\right )}\,\left (\frac {224\,a^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{5\,c^7\,f}+\frac {416\,a^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\sin \left (e+f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{5\,c^7\,f}-\frac {32\,a^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\cos \left (2\,e+2\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{c^7\,f}-\frac {32\,a^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\sin \left (3\,e+3\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{3\,c^7\,f}\right )}{-858\,\cos \left (e+f\,x\right )\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}+858\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\cos \left (3\,e+3\,f\,x\right )-130\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\cos \left (5\,e+5\,f\,x\right )+2\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\cos \left (7\,e+7\,f\,x\right )+1144\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\sin \left (2\,e+2\,f\,x\right )-416\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\sin \left (4\,e+4\,f\,x\right )+24\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\sin \left (6\,e+6\,f\,x\right )} \] Input:

int((a + a*sin(e + f*x))^(7/2)/(c - c*sin(e + f*x))^(13/2),x)
 

Output:

-((c - c*sin(e + f*x))^(1/2)*((224*a^3*exp(e*7i + f*x*7i)*(a + a*sin(e + f 
*x))^(1/2))/(5*c^7*f) + (416*a^3*exp(e*7i + f*x*7i)*sin(e + f*x)*(a + a*si 
n(e + f*x))^(1/2))/(5*c^7*f) - (32*a^3*exp(e*7i + f*x*7i)*cos(2*e + 2*f*x) 
*(a + a*sin(e + f*x))^(1/2))/(c^7*f) - (32*a^3*exp(e*7i + f*x*7i)*sin(3*e 
+ 3*f*x)*(a + a*sin(e + f*x))^(1/2))/(3*c^7*f)))/(858*exp(e*7i + f*x*7i)*c 
os(3*e + 3*f*x) - 858*cos(e + f*x)*exp(e*7i + f*x*7i) - 130*exp(e*7i + f*x 
*7i)*cos(5*e + 5*f*x) + 2*exp(e*7i + f*x*7i)*cos(7*e + 7*f*x) + 1144*exp(e 
*7i + f*x*7i)*sin(2*e + 2*f*x) - 416*exp(e*7i + f*x*7i)*sin(4*e + 4*f*x) + 
 24*exp(e*7i + f*x*7i)*sin(6*e + 6*f*x))
 

Reduce [F]

\[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=\frac {\sqrt {c}\, \sqrt {a}\, a^{3} \left (-\left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{3}}{\sin \left (f x +e \right )^{7}-7 \sin \left (f x +e \right )^{6}+21 \sin \left (f x +e \right )^{5}-35 \sin \left (f x +e \right )^{4}+35 \sin \left (f x +e \right )^{3}-21 \sin \left (f x +e \right )^{2}+7 \sin \left (f x +e \right )-1}d x \right )-3 \left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{2}}{\sin \left (f x +e \right )^{7}-7 \sin \left (f x +e \right )^{6}+21 \sin \left (f x +e \right )^{5}-35 \sin \left (f x +e \right )^{4}+35 \sin \left (f x +e \right )^{3}-21 \sin \left (f x +e \right )^{2}+7 \sin \left (f x +e \right )-1}d x \right )-3 \left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )}{\sin \left (f x +e \right )^{7}-7 \sin \left (f x +e \right )^{6}+21 \sin \left (f x +e \right )^{5}-35 \sin \left (f x +e \right )^{4}+35 \sin \left (f x +e \right )^{3}-21 \sin \left (f x +e \right )^{2}+7 \sin \left (f x +e \right )-1}d x \right )-\left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}}{\sin \left (f x +e \right )^{7}-7 \sin \left (f x +e \right )^{6}+21 \sin \left (f x +e \right )^{5}-35 \sin \left (f x +e \right )^{4}+35 \sin \left (f x +e \right )^{3}-21 \sin \left (f x +e \right )^{2}+7 \sin \left (f x +e \right )-1}d x \right )\right )}{c^{7}} \] Input:

int((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(13/2),x)
 

Output:

(sqrt(c)*sqrt(a)*a**3*( - int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) 
 + 1)*sin(e + f*x)**3)/(sin(e + f*x)**7 - 7*sin(e + f*x)**6 + 21*sin(e + f 
*x)**5 - 35*sin(e + f*x)**4 + 35*sin(e + f*x)**3 - 21*sin(e + f*x)**2 + 7* 
sin(e + f*x) - 1),x) - 3*int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) 
+ 1)*sin(e + f*x)**2)/(sin(e + f*x)**7 - 7*sin(e + f*x)**6 + 21*sin(e + f* 
x)**5 - 35*sin(e + f*x)**4 + 35*sin(e + f*x)**3 - 21*sin(e + f*x)**2 + 7*s 
in(e + f*x) - 1),x) - 3*int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 
 1)*sin(e + f*x))/(sin(e + f*x)**7 - 7*sin(e + f*x)**6 + 21*sin(e + f*x)** 
5 - 35*sin(e + f*x)**4 + 35*sin(e + f*x)**3 - 21*sin(e + f*x)**2 + 7*sin(e 
 + f*x) - 1),x) - int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1))/( 
sin(e + f*x)**7 - 7*sin(e + f*x)**6 + 21*sin(e + f*x)**5 - 35*sin(e + f*x) 
**4 + 35*sin(e + f*x)**3 - 21*sin(e + f*x)**2 + 7*sin(e + f*x) - 1),x)))/c 
**7