\(\int \frac {\csc (c+d x)}{a-b \sin ^4(c+d x)} \, dx\) [149]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 136 \[ \int \frac {\csc (c+d x)}{a-b \sin ^4(c+d x)} \, dx=-\frac {\sqrt [4]{b} \arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 a \sqrt {\sqrt {a}-\sqrt {b}} d}-\frac {\text {arctanh}(\cos (c+d x))}{a d}+\frac {\sqrt [4]{b} \text {arctanh}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{2 a \sqrt {\sqrt {a}+\sqrt {b}} d} \] Output:

-1/2*b^(1/4)*arctan(b^(1/4)*cos(d*x+c)/(a^(1/2)-b^(1/2))^(1/2))/a/(a^(1/2) 
-b^(1/2))^(1/2)/d-arctanh(cos(d*x+c))/a/d+1/2*b^(1/4)*arctanh(b^(1/4)*cos( 
d*x+c)/(a^(1/2)+b^(1/2))^(1/2))/a/(a^(1/2)+b^(1/2))^(1/2)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 9.60 (sec) , antiderivative size = 318, normalized size of antiderivative = 2.34 \[ \int \frac {\csc (c+d x)}{a-b \sin ^4(c+d x)} \, dx=-\frac {8 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-8 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+i b \text {RootSum}\left [b-4 b \text {$\#$1}^2-16 a \text {$\#$1}^4+6 b \text {$\#$1}^4-4 b \text {$\#$1}^6+b \text {$\#$1}^8\&,\frac {-2 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )+i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right )+6 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^2-3 i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^2-6 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^4+3 i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^4+2 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^6-i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^6}{-b \text {$\#$1}-8 a \text {$\#$1}^3+3 b \text {$\#$1}^3-3 b \text {$\#$1}^5+b \text {$\#$1}^7}\&\right ]}{8 a d} \] Input:

Integrate[Csc[c + d*x]/(a - b*Sin[c + d*x]^4),x]
 

Output:

-1/8*(8*Log[Cos[(c + d*x)/2]] - 8*Log[Sin[(c + d*x)/2]] + I*b*RootSum[b - 
4*b*#1^2 - 16*a*#1^4 + 6*b*#1^4 - 4*b*#1^6 + b*#1^8 & , (-2*ArcTan[Sin[c + 
 d*x]/(Cos[c + d*x] - #1)] + I*Log[1 - 2*Cos[c + d*x]*#1 + #1^2] + 6*ArcTa 
n[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^2 - (3*I)*Log[1 - 2*Cos[c + d*x]*#1 
 + #1^2]*#1^2 - 6*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^4 + (3*I)*Lo 
g[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^4 + 2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] 
 - #1)]*#1^6 - I*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^6)/(-(b*#1) - 8*a*#1 
^3 + 3*b*#1^3 - 3*b*#1^5 + b*#1^7) & ])/(a*d)
 

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.96, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3042, 3694, 1484, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc (c+d x)}{a-b \sin ^4(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (c+d x) \left (a-b \sin (c+d x)^4\right )}dx\)

\(\Big \downarrow \) 3694

\(\displaystyle -\frac {\int \frac {1}{\left (1-\cos ^2(c+d x)\right ) \left (-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)+a-b\right )}d\cos (c+d x)}{d}\)

\(\Big \downarrow \) 1484

\(\displaystyle -\frac {\int \left (\frac {b-b \cos ^2(c+d x)}{a \left (-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)+a-b\right )}-\frac {1}{a \left (\cos ^2(c+d x)-1\right )}\right )d\cos (c+d x)}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\frac {\sqrt [4]{b} \arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 a \sqrt {\sqrt {a}-\sqrt {b}}}-\frac {\sqrt [4]{b} \text {arctanh}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{2 a \sqrt {\sqrt {a}+\sqrt {b}}}+\frac {\text {arctanh}(\cos (c+d x))}{a}}{d}\)

Input:

Int[Csc[c + d*x]/(a - b*Sin[c + d*x]^4),x]
 

Output:

-(((b^(1/4)*ArcTan[(b^(1/4)*Cos[c + d*x])/Sqrt[Sqrt[a] - Sqrt[b]]])/(2*a*S 
qrt[Sqrt[a] - Sqrt[b]]) + ArcTanh[Cos[c + d*x]]/a - (b^(1/4)*ArcTanh[(b^(1 
/4)*Cos[c + d*x])/Sqrt[Sqrt[a] + Sqrt[b]]])/(2*a*Sqrt[Sqrt[a] + Sqrt[b]])) 
/d)
 

Defintions of rubi rules used

rule 1484
Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symb 
ol] :> Int[ExpandIntegrand[(d + e*x^2)^q/(a + b*x^2 + c*x^4), x], x] /; Fre 
eQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 
 0] && IntegerQ[q]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3694
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-ff/f 
Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - 2*b*ff^2*x^2 + b*ff^4*x^4)^p, 
 x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 
 1)/2]
 
Maple [A] (verified)

Time = 0.84 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.88

method result size
derivativedivides \(\frac {\frac {\ln \left (\cos \left (d x +c \right )-1\right )}{2 a}-\frac {b^{2} \left (\frac {\arctan \left (\frac {b \cos \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}-b \right ) b}}\right )}{2 b \sqrt {\left (\sqrt {a b}-b \right ) b}}-\frac {\operatorname {arctanh}\left (\frac {b \cos \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{2 b \sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{a}-\frac {\ln \left (\cos \left (d x +c \right )+1\right )}{2 a}}{d}\) \(119\)
default \(\frac {\frac {\ln \left (\cos \left (d x +c \right )-1\right )}{2 a}-\frac {b^{2} \left (\frac {\arctan \left (\frac {b \cos \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}-b \right ) b}}\right )}{2 b \sqrt {\left (\sqrt {a b}-b \right ) b}}-\frac {\operatorname {arctanh}\left (\frac {b \cos \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{2 b \sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{a}-\frac {\ln \left (\cos \left (d x +c \right )+1\right )}{2 a}}{d}\) \(119\)
risch \(\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{a d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{a d}+2 i \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (4096 a^{5} d^{4}-4096 a^{4} b \,d^{4}\right ) \textit {\_Z}^{4}-128 a^{2} b \,d^{2} \textit {\_Z}^{2}-b \right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+\left (\left (-\frac {1024 i d^{3} a^{4}}{b}+1024 i a^{3} d^{3}\right ) \textit {\_R}^{3}+32 i a d \textit {\_R} \right ) {\mathrm e}^{i \left (d x +c \right )}+1\right )\right )\) \(143\)

Input:

int(csc(d*x+c)/(a-b*sin(d*x+c)^4),x,method=_RETURNVERBOSE)
 

Output:

1/d*(1/2/a*ln(cos(d*x+c)-1)-b^2/a*(1/2/b/(((a*b)^(1/2)-b)*b)^(1/2)*arctan( 
b*cos(d*x+c)/(((a*b)^(1/2)-b)*b)^(1/2))-1/2/b/(((a*b)^(1/2)+b)*b)^(1/2)*ar 
ctanh(b*cos(d*x+c)/(((a*b)^(1/2)+b)*b)^(1/2)))-1/2/a*ln(cos(d*x+c)+1))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 773 vs. \(2 (100) = 200\).

Time = 0.16 (sec) , antiderivative size = 773, normalized size of antiderivative = 5.68 \[ \int \frac {\csc (c+d x)}{a-b \sin ^4(c+d x)} \, dx =\text {Too large to display} \] Input:

integrate(csc(d*x+c)/(a-b*sin(d*x+c)^4),x, algorithm="fricas")
 

Output:

1/4*(a*d*sqrt(-((a^3 - a^2*b)*d^2*sqrt(b/((a^5 - 2*a^4*b + a^3*b^2)*d^4)) 
+ b)/((a^3 - a^2*b)*d^2))*log(b*cos(d*x + c) - ((a^4 - a^3*b)*d^3*sqrt(b/( 
(a^5 - 2*a^4*b + a^3*b^2)*d^4)) - a*b*d)*sqrt(-((a^3 - a^2*b)*d^2*sqrt(b/( 
(a^5 - 2*a^4*b + a^3*b^2)*d^4)) + b)/((a^3 - a^2*b)*d^2))) - a*d*sqrt(((a^ 
3 - a^2*b)*d^2*sqrt(b/((a^5 - 2*a^4*b + a^3*b^2)*d^4)) - b)/((a^3 - a^2*b) 
*d^2))*log(b*cos(d*x + c) - ((a^4 - a^3*b)*d^3*sqrt(b/((a^5 - 2*a^4*b + a^ 
3*b^2)*d^4)) + a*b*d)*sqrt(((a^3 - a^2*b)*d^2*sqrt(b/((a^5 - 2*a^4*b + a^3 
*b^2)*d^4)) - b)/((a^3 - a^2*b)*d^2))) - a*d*sqrt(-((a^3 - a^2*b)*d^2*sqrt 
(b/((a^5 - 2*a^4*b + a^3*b^2)*d^4)) + b)/((a^3 - a^2*b)*d^2))*log(-b*cos(d 
*x + c) - ((a^4 - a^3*b)*d^3*sqrt(b/((a^5 - 2*a^4*b + a^3*b^2)*d^4)) - a*b 
*d)*sqrt(-((a^3 - a^2*b)*d^2*sqrt(b/((a^5 - 2*a^4*b + a^3*b^2)*d^4)) + b)/ 
((a^3 - a^2*b)*d^2))) + a*d*sqrt(((a^3 - a^2*b)*d^2*sqrt(b/((a^5 - 2*a^4*b 
 + a^3*b^2)*d^4)) - b)/((a^3 - a^2*b)*d^2))*log(-b*cos(d*x + c) - ((a^4 - 
a^3*b)*d^3*sqrt(b/((a^5 - 2*a^4*b + a^3*b^2)*d^4)) + a*b*d)*sqrt(((a^3 - a 
^2*b)*d^2*sqrt(b/((a^5 - 2*a^4*b + a^3*b^2)*d^4)) - b)/((a^3 - a^2*b)*d^2) 
)) - 2*log(1/2*cos(d*x + c) + 1/2) + 2*log(-1/2*cos(d*x + c) + 1/2))/(a*d)
 

Sympy [F]

\[ \int \frac {\csc (c+d x)}{a-b \sin ^4(c+d x)} \, dx=\int \frac {\csc {\left (c + d x \right )}}{a - b \sin ^{4}{\left (c + d x \right )}}\, dx \] Input:

integrate(csc(d*x+c)/(a-b*sin(d*x+c)**4),x)
 

Output:

Integral(csc(c + d*x)/(a - b*sin(c + d*x)**4), x)
 

Maxima [F]

\[ \int \frac {\csc (c+d x)}{a-b \sin ^4(c+d x)} \, dx=\int { -\frac {\csc \left (d x + c\right )}{b \sin \left (d x + c\right )^{4} - a} \,d x } \] Input:

integrate(csc(d*x+c)/(a-b*sin(d*x+c)^4),x, algorithm="maxima")
 

Output:

-1/2*(2*a*d*integrate(-2*(12*b^2*cos(3*d*x + 3*c)*sin(2*d*x + 2*c) - 4*b^2 
*cos(d*x + c)*sin(2*d*x + 2*c) + 4*b^2*cos(2*d*x + 2*c)*sin(d*x + c) - b^2 
*sin(d*x + c) + (b^2*sin(7*d*x + 7*c) - 3*b^2*sin(5*d*x + 5*c) + 3*b^2*sin 
(3*d*x + 3*c) - b^2*sin(d*x + c))*cos(8*d*x + 8*c) + 2*(2*b^2*sin(6*d*x + 
6*c) + 2*b^2*sin(2*d*x + 2*c) + (8*a*b - 3*b^2)*sin(4*d*x + 4*c))*cos(7*d* 
x + 7*c) + 4*(3*b^2*sin(5*d*x + 5*c) - 3*b^2*sin(3*d*x + 3*c) + b^2*sin(d* 
x + c))*cos(6*d*x + 6*c) - 6*(2*b^2*sin(2*d*x + 2*c) + (8*a*b - 3*b^2)*sin 
(4*d*x + 4*c))*cos(5*d*x + 5*c) - 2*(3*(8*a*b - 3*b^2)*sin(3*d*x + 3*c) - 
(8*a*b - 3*b^2)*sin(d*x + c))*cos(4*d*x + 4*c) - (b^2*cos(7*d*x + 7*c) - 3 
*b^2*cos(5*d*x + 5*c) + 3*b^2*cos(3*d*x + 3*c) - b^2*cos(d*x + c))*sin(8*d 
*x + 8*c) - (4*b^2*cos(6*d*x + 6*c) + 4*b^2*cos(2*d*x + 2*c) - b^2 + 2*(8* 
a*b - 3*b^2)*cos(4*d*x + 4*c))*sin(7*d*x + 7*c) - 4*(3*b^2*cos(5*d*x + 5*c 
) - 3*b^2*cos(3*d*x + 3*c) + b^2*cos(d*x + c))*sin(6*d*x + 6*c) + 3*(4*b^2 
*cos(2*d*x + 2*c) - b^2 + 2*(8*a*b - 3*b^2)*cos(4*d*x + 4*c))*sin(5*d*x + 
5*c) + 2*(3*(8*a*b - 3*b^2)*cos(3*d*x + 3*c) - (8*a*b - 3*b^2)*cos(d*x + c 
))*sin(4*d*x + 4*c) - 3*(4*b^2*cos(2*d*x + 2*c) - b^2)*sin(3*d*x + 3*c))/( 
a*b^2*cos(8*d*x + 8*c)^2 + 16*a*b^2*cos(6*d*x + 6*c)^2 + 16*a*b^2*cos(2*d* 
x + 2*c)^2 + a*b^2*sin(8*d*x + 8*c)^2 + 16*a*b^2*sin(6*d*x + 6*c)^2 + 16*a 
*b^2*sin(2*d*x + 2*c)^2 - 8*a*b^2*cos(2*d*x + 2*c) + a*b^2 + 4*(64*a^3 - 4 
8*a^2*b + 9*a*b^2)*cos(4*d*x + 4*c)^2 + 4*(64*a^3 - 48*a^2*b + 9*a*b^2)...
 

Giac [F]

\[ \int \frac {\csc (c+d x)}{a-b \sin ^4(c+d x)} \, dx=\int { -\frac {\csc \left (d x + c\right )}{b \sin \left (d x + c\right )^{4} - a} \,d x } \] Input:

integrate(csc(d*x+c)/(a-b*sin(d*x+c)^4),x, algorithm="giac")
 

Output:

sage0*x
 

Mupad [B] (verification not implemented)

Time = 39.06 (sec) , antiderivative size = 2031, normalized size of antiderivative = 14.93 \[ \int \frac {\csc (c+d x)}{a-b \sin ^4(c+d x)} \, dx=\text {Too large to display} \] Input:

int(1/(sin(c + d*x)*(a - b*sin(c + d*x)^4)),x)
 

Output:

- (atan(((((((a^2*b + (a^5*b)^(1/2))/(16*(a^4*b - a^5)))^(1/2)*(256*a^4*b^ 
4 - 192*a^3*b^5 + cos(c + d*x)*(768*a^4*b^5 - 512*a^5*b^4)*((a^2*b + (a^5* 
b)^(1/2))/(16*(a^4*b - a^5)))^(1/2)) - 144*a^2*b^5*cos(c + d*x))*((a^2*b + 
 (a^5*b)^(1/2))/(16*(a^4*b - a^5)))^(1/2) + 12*a*b^5)*((a^2*b + (a^5*b)^(1 
/2))/(16*(a^4*b - a^5)))^(1/2) + 6*b^5*cos(c + d*x))*((a^2*b + (a^5*b)^(1/ 
2))/(16*(a^4*b - a^5)))^(1/2)*1i + (((((a^2*b + (a^5*b)^(1/2))/(16*(a^4*b 
- a^5)))^(1/2)*(192*a^3*b^5 - 256*a^4*b^4 + cos(c + d*x)*(768*a^4*b^5 - 51 
2*a^5*b^4)*((a^2*b + (a^5*b)^(1/2))/(16*(a^4*b - a^5)))^(1/2)) - 144*a^2*b 
^5*cos(c + d*x))*((a^2*b + (a^5*b)^(1/2))/(16*(a^4*b - a^5)))^(1/2) - 12*a 
*b^5)*((a^2*b + (a^5*b)^(1/2))/(16*(a^4*b - a^5)))^(1/2) + 6*b^5*cos(c + d 
*x))*((a^2*b + (a^5*b)^(1/2))/(16*(a^4*b - a^5)))^(1/2)*1i)/((((((a^2*b + 
(a^5*b)^(1/2))/(16*(a^4*b - a^5)))^(1/2)*(256*a^4*b^4 - 192*a^3*b^5 + cos( 
c + d*x)*(768*a^4*b^5 - 512*a^5*b^4)*((a^2*b + (a^5*b)^(1/2))/(16*(a^4*b - 
 a^5)))^(1/2)) - 144*a^2*b^5*cos(c + d*x))*((a^2*b + (a^5*b)^(1/2))/(16*(a 
^4*b - a^5)))^(1/2) + 12*a*b^5)*((a^2*b + (a^5*b)^(1/2))/(16*(a^4*b - a^5) 
))^(1/2) + 6*b^5*cos(c + d*x))*((a^2*b + (a^5*b)^(1/2))/(16*(a^4*b - a^5)) 
)^(1/2) - (((((a^2*b + (a^5*b)^(1/2))/(16*(a^4*b - a^5)))^(1/2)*(192*a^3*b 
^5 - 256*a^4*b^4 + cos(c + d*x)*(768*a^4*b^5 - 512*a^5*b^4)*((a^2*b + (a^5 
*b)^(1/2))/(16*(a^4*b - a^5)))^(1/2)) - 144*a^2*b^5*cos(c + d*x))*((a^2*b 
+ (a^5*b)^(1/2))/(16*(a^4*b - a^5)))^(1/2) - 12*a*b^5)*((a^2*b + (a^5*b...
 

Reduce [F]

\[ \int \frac {\csc (c+d x)}{a-b \sin ^4(c+d x)} \, dx=\frac {-4 \left (\int \frac {\sin \left (d x +c \right )^{3}}{\sin \left (d x +c \right )^{4} b -a}d x \right ) b d -4 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right )-\mathrm {log}\left (a^{\frac {1}{4}}+b^{\frac {1}{4}} \sin \left (d x +c \right )\right )-\mathrm {log}\left (-a^{\frac {1}{4}}+b^{\frac {1}{4}} \sin \left (d x +c \right )\right )-\mathrm {log}\left (\sqrt {a}+\sqrt {b}\, \sin \left (d x +c \right )^{2}\right )+\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} a +4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} a +6 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a -16 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +a \right )+4 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 a d} \] Input:

int(csc(d*x+c)/(a-b*sin(d*x+c)^4),x)
 

Output:

( - 4*int(sin(c + d*x)**3/(sin(c + d*x)**4*b - a),x)*b*d - 4*log(tan((c + 
d*x)/2)**2 + 1) - log(a**(1/4) + b**(1/4)*sin(c + d*x)) - log( - a**(1/4) 
+ b**(1/4)*sin(c + d*x)) - log(sqrt(a) + sqrt(b)*sin(c + d*x)**2) + log(ta 
n((c + d*x)/2)**8*a + 4*tan((c + d*x)/2)**6*a + 6*tan((c + d*x)/2)**4*a - 
16*tan((c + d*x)/2)**4*b + 4*tan((c + d*x)/2)**2*a + a) + 4*log(tan((c + d 
*x)/2)))/(4*a*d)