\(\int \frac {\csc ^3(c+d x)}{a-b \sin ^4(c+d x)} \, dx\) [150]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 164 \[ \int \frac {\csc ^3(c+d x)}{a-b \sin ^4(c+d x)} \, dx=-\frac {b^{3/4} \arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 a^{3/2} \sqrt {\sqrt {a}-\sqrt {b}} d}-\frac {\text {arctanh}(\cos (c+d x))}{2 a d}-\frac {b^{3/4} \text {arctanh}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{2 a^{3/2} \sqrt {\sqrt {a}+\sqrt {b}} d}-\frac {\cot (c+d x) \csc (c+d x)}{2 a d} \] Output:

-1/2*b^(3/4)*arctan(b^(1/4)*cos(d*x+c)/(a^(1/2)-b^(1/2))^(1/2))/a^(3/2)/(a 
^(1/2)-b^(1/2))^(1/2)/d-1/2*arctanh(cos(d*x+c))/a/d-1/2*b^(3/4)*arctanh(b^ 
(1/4)*cos(d*x+c)/(a^(1/2)+b^(1/2))^(1/2))/a^(3/2)/(a^(1/2)+b^(1/2))^(1/2)/ 
d-1/2*cot(d*x+c)*csc(d*x+c)/a/d
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 1.84 (sec) , antiderivative size = 242, normalized size of antiderivative = 1.48 \[ \int \frac {\csc ^3(c+d x)}{a-b \sin ^4(c+d x)} \, dx=\frac {-\csc ^2\left (\frac {1}{2} (c+d x)\right )-4 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+4 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+4 i b \text {RootSum}\left [b-4 b \text {$\#$1}^2-16 a \text {$\#$1}^4+6 b \text {$\#$1}^4-4 b \text {$\#$1}^6+b \text {$\#$1}^8\&,\frac {-2 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}+i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}+2 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^3-i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^3}{-b-8 a \text {$\#$1}^2+3 b \text {$\#$1}^2-3 b \text {$\#$1}^4+b \text {$\#$1}^6}\&\right ]+\sec ^2\left (\frac {1}{2} (c+d x)\right )}{8 a d} \] Input:

Integrate[Csc[c + d*x]^3/(a - b*Sin[c + d*x]^4),x]
 

Output:

(-Csc[(c + d*x)/2]^2 - 4*Log[Cos[(c + d*x)/2]] + 4*Log[Sin[(c + d*x)/2]] + 
 (4*I)*b*RootSum[b - 4*b*#1^2 - 16*a*#1^4 + 6*b*#1^4 - 4*b*#1^6 + b*#1^8 & 
 , (-2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1 + I*Log[1 - 2*Cos[c + d 
*x]*#1 + #1^2]*#1 + 2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^3 - I*Lo 
g[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^3)/(-b - 8*a*#1^2 + 3*b*#1^2 - 3*b*#1^4 
 + b*#1^6) & ] + Sec[(c + d*x)/2]^2)/(8*a*d)
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.06, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {3042, 3694, 1484, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc ^3(c+d x)}{a-b \sin ^4(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (c+d x)^3 \left (a-b \sin (c+d x)^4\right )}dx\)

\(\Big \downarrow \) 3694

\(\displaystyle -\frac {\int \frac {1}{\left (1-\cos ^2(c+d x)\right )^2 \left (-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)+a-b\right )}d\cos (c+d x)}{d}\)

\(\Big \downarrow \) 1484

\(\displaystyle -\frac {\int \left (\frac {b}{a \left (-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)+a-b\right )}-\frac {1}{2 a \left (\cos ^2(c+d x)-1\right )}+\frac {1}{4 a (\cos (c+d x)-1)^2}+\frac {1}{4 a (\cos (c+d x)+1)^2}\right )d\cos (c+d x)}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\frac {b^{3/4} \arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 a^{3/2} \sqrt {\sqrt {a}-\sqrt {b}}}+\frac {b^{3/4} \text {arctanh}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{2 a^{3/2} \sqrt {\sqrt {a}+\sqrt {b}}}+\frac {\text {arctanh}(\cos (c+d x))}{2 a}+\frac {1}{4 a (1-\cos (c+d x))}-\frac {1}{4 a (\cos (c+d x)+1)}}{d}\)

Input:

Int[Csc[c + d*x]^3/(a - b*Sin[c + d*x]^4),x]
 

Output:

-(((b^(3/4)*ArcTan[(b^(1/4)*Cos[c + d*x])/Sqrt[Sqrt[a] - Sqrt[b]]])/(2*a^( 
3/2)*Sqrt[Sqrt[a] - Sqrt[b]]) + ArcTanh[Cos[c + d*x]]/(2*a) + (b^(3/4)*Arc 
Tanh[(b^(1/4)*Cos[c + d*x])/Sqrt[Sqrt[a] + Sqrt[b]]])/(2*a^(3/2)*Sqrt[Sqrt 
[a] + Sqrt[b]]) + 1/(4*a*(1 - Cos[c + d*x])) - 1/(4*a*(1 + Cos[c + d*x]))) 
/d)
 

Defintions of rubi rules used

rule 1484
Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symb 
ol] :> Int[ExpandIntegrand[(d + e*x^2)^q/(a + b*x^2 + c*x^4), x], x] /; Fre 
eQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 
 0] && IntegerQ[q]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3694
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-ff/f 
Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - 2*b*ff^2*x^2 + b*ff^4*x^4)^p, 
 x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 
 1)/2]
 
Maple [A] (verified)

Time = 1.25 (sec) , antiderivative size = 152, normalized size of antiderivative = 0.93

method result size
derivativedivides \(\frac {\frac {1}{4 a \left (\cos \left (d x +c \right )+1\right )}-\frac {\ln \left (\cos \left (d x +c \right )+1\right )}{4 a}+\frac {b^{2} \left (-\frac {\arctan \left (\frac {b \cos \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}-b \right ) b}}\right )}{2 \sqrt {a b}\, \sqrt {\left (\sqrt {a b}-b \right ) b}}-\frac {\operatorname {arctanh}\left (\frac {b \cos \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{2 \sqrt {a b}\, \sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{a}+\frac {1}{4 a \left (\cos \left (d x +c \right )-1\right )}+\frac {\ln \left (\cos \left (d x +c \right )-1\right )}{4 a}}{d}\) \(152\)
default \(\frac {\frac {1}{4 a \left (\cos \left (d x +c \right )+1\right )}-\frac {\ln \left (\cos \left (d x +c \right )+1\right )}{4 a}+\frac {b^{2} \left (-\frac {\arctan \left (\frac {b \cos \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}-b \right ) b}}\right )}{2 \sqrt {a b}\, \sqrt {\left (\sqrt {a b}-b \right ) b}}-\frac {\operatorname {arctanh}\left (\frac {b \cos \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{2 \sqrt {a b}\, \sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{a}+\frac {1}{4 a \left (\cos \left (d x +c \right )-1\right )}+\frac {\ln \left (\cos \left (d x +c \right )-1\right )}{4 a}}{d}\) \(152\)
risch \(\frac {{\mathrm e}^{3 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )}}{d a \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{2}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{2 a d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{2 a d}-8 i \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (1048576 a^{7} d^{4}-1048576 a^{6} b \,d^{4}\right ) \textit {\_Z}^{4}-2048 a^{3} b^{2} d^{2} \textit {\_Z}^{2}-b^{3}\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+\left (\left (-\frac {65536 i d^{3} a^{5}}{b^{2}}+\frac {65536 i d^{3} a^{4}}{b}\right ) \textit {\_R}^{3}+\left (\frac {64 i a^{2} d}{b}+64 i a d \right ) \textit {\_R} \right ) {\mathrm e}^{i \left (d x +c \right )}+1\right )\right )\) \(202\)

Input:

int(csc(d*x+c)^3/(a-b*sin(d*x+c)^4),x,method=_RETURNVERBOSE)
 

Output:

1/d*(1/4/a/(cos(d*x+c)+1)-1/4/a*ln(cos(d*x+c)+1)+b^2/a*(-1/2/(a*b)^(1/2)/( 
((a*b)^(1/2)-b)*b)^(1/2)*arctan(b*cos(d*x+c)/(((a*b)^(1/2)-b)*b)^(1/2))-1/ 
2/(a*b)^(1/2)/(((a*b)^(1/2)+b)*b)^(1/2)*arctanh(b*cos(d*x+c)/(((a*b)^(1/2) 
+b)*b)^(1/2)))+1/4/a/(cos(d*x+c)-1)+1/4/a*ln(cos(d*x+c)-1))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 924 vs. \(2 (120) = 240\).

Time = 0.21 (sec) , antiderivative size = 924, normalized size of antiderivative = 5.63 \[ \int \frac {\csc ^3(c+d x)}{a-b \sin ^4(c+d x)} \, dx =\text {Too large to display} \] Input:

integrate(csc(d*x+c)^3/(a-b*sin(d*x+c)^4),x, algorithm="fricas")
 

Output:

-1/4*((a*d*cos(d*x + c)^2 - a*d)*sqrt(-((a^4 - a^3*b)*d^2*sqrt(b^3/((a^7 - 
 2*a^6*b + a^5*b^2)*d^4)) + b^2)/((a^4 - a^3*b)*d^2))*log(b^2*cos(d*x + c) 
 - ((a^5 - a^4*b)*d^3*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) - a^2*b*d) 
*sqrt(-((a^4 - a^3*b)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) + b^2) 
/((a^4 - a^3*b)*d^2))) - (a*d*cos(d*x + c)^2 - a*d)*sqrt(((a^4 - a^3*b)*d^ 
2*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) - b^2)/((a^4 - a^3*b)*d^2))*lo 
g(b^2*cos(d*x + c) - ((a^5 - a^4*b)*d^3*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2 
)*d^4)) + a^2*b*d)*sqrt(((a^4 - a^3*b)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a^5* 
b^2)*d^4)) - b^2)/((a^4 - a^3*b)*d^2))) - (a*d*cos(d*x + c)^2 - a*d)*sqrt( 
-((a^4 - a^3*b)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) + b^2)/((a^4 
 - a^3*b)*d^2))*log(-b^2*cos(d*x + c) - ((a^5 - a^4*b)*d^3*sqrt(b^3/((a^7 
- 2*a^6*b + a^5*b^2)*d^4)) - a^2*b*d)*sqrt(-((a^4 - a^3*b)*d^2*sqrt(b^3/(( 
a^7 - 2*a^6*b + a^5*b^2)*d^4)) + b^2)/((a^4 - a^3*b)*d^2))) + (a*d*cos(d*x 
 + c)^2 - a*d)*sqrt(((a^4 - a^3*b)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2) 
*d^4)) - b^2)/((a^4 - a^3*b)*d^2))*log(-b^2*cos(d*x + c) - ((a^5 - a^4*b)* 
d^3*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) + a^2*b*d)*sqrt(((a^4 - a^3* 
b)*d^2*sqrt(b^3/((a^7 - 2*a^6*b + a^5*b^2)*d^4)) - b^2)/((a^4 - a^3*b)*d^2 
))) + (cos(d*x + c)^2 - 1)*log(1/2*cos(d*x + c) + 1/2) - (cos(d*x + c)^2 - 
 1)*log(-1/2*cos(d*x + c) + 1/2) - 2*cos(d*x + c))/(a*d*cos(d*x + c)^2 - a 
*d)
 

Sympy [F]

\[ \int \frac {\csc ^3(c+d x)}{a-b \sin ^4(c+d x)} \, dx=\int \frac {\csc ^{3}{\left (c + d x \right )}}{a - b \sin ^{4}{\left (c + d x \right )}}\, dx \] Input:

integrate(csc(d*x+c)**3/(a-b*sin(d*x+c)**4),x)
 

Output:

Integral(csc(c + d*x)**3/(a - b*sin(c + d*x)**4), x)
 

Maxima [F]

\[ \int \frac {\csc ^3(c+d x)}{a-b \sin ^4(c+d x)} \, dx=\int { -\frac {\csc \left (d x + c\right )^{3}}{b \sin \left (d x + c\right )^{4} - a} \,d x } \] Input:

integrate(csc(d*x+c)^3/(a-b*sin(d*x+c)^4),x, algorithm="maxima")
 

Output:

1/4*(4*(cos(3*d*x + 3*c) + cos(d*x + c))*cos(4*d*x + 4*c) - 4*(2*cos(2*d*x 
 + 2*c) - 1)*cos(3*d*x + 3*c) - 8*cos(2*d*x + 2*c)*cos(d*x + c) + 4*(a*d*c 
os(4*d*x + 4*c)^2 + 4*a*d*cos(2*d*x + 2*c)^2 + a*d*sin(4*d*x + 4*c)^2 - 4* 
a*d*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*a*d*sin(2*d*x + 2*c)^2 - 4*a*d*c 
os(2*d*x + 2*c) + a*d - 2*(2*a*d*cos(2*d*x + 2*c) - a*d)*cos(4*d*x + 4*c)) 
*integrate(8*(4*b^2*cos(3*d*x + 3*c)*sin(2*d*x + 2*c) + 2*(8*a*b - 3*b^2)* 
cos(3*d*x + 3*c)*sin(4*d*x + 4*c) - 2*(8*a*b - 3*b^2)*cos(4*d*x + 4*c)*sin 
(3*d*x + 3*c) - (b^2*sin(5*d*x + 5*c) - b^2*sin(3*d*x + 3*c))*cos(8*d*x + 
8*c) + 4*(b^2*sin(5*d*x + 5*c) - b^2*sin(3*d*x + 3*c))*cos(6*d*x + 6*c) - 
2*(2*b^2*sin(2*d*x + 2*c) + (8*a*b - 3*b^2)*sin(4*d*x + 4*c))*cos(5*d*x + 
5*c) + (b^2*cos(5*d*x + 5*c) - b^2*cos(3*d*x + 3*c))*sin(8*d*x + 8*c) - 4* 
(b^2*cos(5*d*x + 5*c) - b^2*cos(3*d*x + 3*c))*sin(6*d*x + 6*c) + (4*b^2*co 
s(2*d*x + 2*c) - b^2 + 2*(8*a*b - 3*b^2)*cos(4*d*x + 4*c))*sin(5*d*x + 5*c 
) - (4*b^2*cos(2*d*x + 2*c) - b^2)*sin(3*d*x + 3*c))/(a*b^2*cos(8*d*x + 8* 
c)^2 + 16*a*b^2*cos(6*d*x + 6*c)^2 + 16*a*b^2*cos(2*d*x + 2*c)^2 + a*b^2*s 
in(8*d*x + 8*c)^2 + 16*a*b^2*sin(6*d*x + 6*c)^2 + 16*a*b^2*sin(2*d*x + 2*c 
)^2 - 8*a*b^2*cos(2*d*x + 2*c) + a*b^2 + 4*(64*a^3 - 48*a^2*b + 9*a*b^2)*c 
os(4*d*x + 4*c)^2 + 4*(64*a^3 - 48*a^2*b + 9*a*b^2)*sin(4*d*x + 4*c)^2 + 1 
6*(8*a^2*b - 3*a*b^2)*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) - 2*(4*a*b^2*cos(6 
*d*x + 6*c) + 4*a*b^2*cos(2*d*x + 2*c) - a*b^2 + 2*(8*a^2*b - 3*a*b^2)*...
 

Giac [F]

\[ \int \frac {\csc ^3(c+d x)}{a-b \sin ^4(c+d x)} \, dx=\int { -\frac {\csc \left (d x + c\right )^{3}}{b \sin \left (d x + c\right )^{4} - a} \,d x } \] Input:

integrate(csc(d*x+c)^3/(a-b*sin(d*x+c)^4),x, algorithm="giac")
 

Output:

sage0*x
 

Mupad [B] (verification not implemented)

Time = 38.70 (sec) , antiderivative size = 2779, normalized size of antiderivative = 16.95 \[ \int \frac {\csc ^3(c+d x)}{a-b \sin ^4(c+d x)} \, dx=\text {Too large to display} \] Input:

int(1/(sin(c + d*x)^3*(a - b*sin(c + d*x)^4)),x)
 

Output:

(atan(cos(c + d*x)*1i)*1i)/(d*(2*a - 2*a*cos(c + d*x)^2)) - cos(c + d*x)/( 
d*(2*a - 2*a*cos(c + d*x)^2)) - (atan(cos(c + d*x)*1i)*cos(c + d*x)^2*1i)/ 
(d*(2*a - 2*a*cos(c + d*x)^2)) + (a*atan((a^13*cos(c + d*x)*(((a^7*b^3)^(1 
/2) + a^3*b^2)/(16*a^6*b - 16*a^7))^(5/2)*2048i + a^10*b*cos(c + d*x)*(((a 
^7*b^3)^(1/2) + a^3*b^2)/(16*a^6*b - 16*a^7))^(3/2)*64i - a^12*b*cos(c + d 
*x)*(((a^7*b^3)^(1/2) + a^3*b^2)/(16*a^6*b - 16*a^7))^(5/2)*7168i - a^4*b^ 
5*cos(c + d*x)*(((a^7*b^3)^(1/2) + a^3*b^2)/(16*a^6*b - 16*a^7))^(1/2)*8i 
+ a^5*b^4*cos(c + d*x)*(((a^7*b^3)^(1/2) + a^3*b^2)/(16*a^6*b - 16*a^7))^( 
1/2)*12i - a^7*b^2*cos(c + d*x)*(((a^7*b^3)^(1/2) + a^3*b^2)/(16*a^6*b - 1 
6*a^7))^(1/2)*4i + a^7*b^4*cos(c + d*x)*(((a^7*b^3)^(1/2) + a^3*b^2)/(16*a 
^6*b - 16*a^7))^(3/2)*320i - a^8*b^3*cos(c + d*x)*(((a^7*b^3)^(1/2) + a^3* 
b^2)/(16*a^6*b - 16*a^7))^(3/2)*576i + a^9*b^2*cos(c + d*x)*(((a^7*b^3)^(1 
/2) + a^3*b^2)/(16*a^6*b - 16*a^7))^(3/2)*192i - a^10*b^3*cos(c + d*x)*((( 
a^7*b^3)^(1/2) + a^3*b^2)/(16*a^6*b - 16*a^7))^(5/2)*3072i + a^11*b^2*cos( 
c + d*x)*(((a^7*b^3)^(1/2) + a^3*b^2)/(16*a^6*b - 16*a^7))^(5/2)*8192i)/(2 
*b^3*(a^7*b^3)^(1/2) + a^3*b^5 + a^5*b^3 - a*b^2*(a^7*b^3)^(1/2) + a^2*b*( 
a^7*b^3)^(1/2)))*(((a^7*b^3)^(1/2) + a^3*b^2)/(16*a^6*b - 16*a^7))^(1/2)*4 
i)/(d*(2*a - 2*a*cos(c + d*x)^2)) + (a*atan((a^13*cos(c + d*x)*(-((a^7*b^3 
)^(1/2) - a^3*b^2)/(16*a^6*b - 16*a^7))^(5/2)*2048i + a^10*b*cos(c + d*x)* 
(-((a^7*b^3)^(1/2) - a^3*b^2)/(16*a^6*b - 16*a^7))^(3/2)*64i - a^12*b*c...
 

Reduce [F]

\[ \int \frac {\csc ^3(c+d x)}{a-b \sin ^4(c+d x)} \, dx =\text {Too large to display} \] Input:

int(csc(d*x+c)^3/(a-b*sin(d*x+c)^4),x)
 

Output:

(288*int(tan((c + d*x)/2)/(tan((c + d*x)/2)**8*a + 4*tan((c + d*x)/2)**6*a 
 + 6*tan((c + d*x)/2)**4*a - 16*tan((c + d*x)/2)**4*b + 4*tan((c + d*x)/2) 
**2*a + a),x)*tan((c + d*x)/2)**2*a**2*b*d - 5120*int(tan((c + d*x)/2)/(ta 
n((c + d*x)/2)**8*a + 4*tan((c + d*x)/2)**6*a + 6*tan((c + d*x)/2)**4*a - 
16*tan((c + d*x)/2)**4*b + 4*tan((c + d*x)/2)**2*a + a),x)*tan((c + d*x)/2 
)**2*a*b**2*d + 8192*int(tan((c + d*x)/2)/(tan((c + d*x)/2)**8*a + 4*tan(( 
c + d*x)/2)**6*a + 6*tan((c + d*x)/2)**4*a - 16*tan((c + d*x)/2)**4*b + 4* 
tan((c + d*x)/2)**2*a + a),x)*tan((c + d*x)/2)**2*b**3*d + 128*int(1/(tan( 
(c + d*x)/2)**11*a + 4*tan((c + d*x)/2)**9*a + 6*tan((c + d*x)/2)**7*a - 1 
6*tan((c + d*x)/2)**7*b + 4*tan((c + d*x)/2)**5*a + tan((c + d*x)/2)**3*a) 
,x)*tan((c + d*x)/2)**2*a**2*b*d - 512*int(1/(tan((c + d*x)/2)**11*a + 4*t 
an((c + d*x)/2)**9*a + 6*tan((c + d*x)/2)**7*a - 16*tan((c + d*x)/2)**7*b 
+ 4*tan((c + d*x)/2)**5*a + tan((c + d*x)/2)**3*a),x)*tan((c + d*x)/2)**2* 
a*b**2*d + 352*int(1/(tan((c + d*x)/2)**9*a + 4*tan((c + d*x)/2)**7*a + 6* 
tan((c + d*x)/2)**5*a - 16*tan((c + d*x)/2)**5*b + 4*tan((c + d*x)/2)**3*a 
 + tan((c + d*x)/2)*a),x)*tan((c + d*x)/2)**2*a**2*b*d - 2048*int(1/(tan(( 
c + d*x)/2)**9*a + 4*tan((c + d*x)/2)**7*a + 6*tan((c + d*x)/2)**5*a - 16* 
tan((c + d*x)/2)**5*b + 4*tan((c + d*x)/2)**3*a + tan((c + d*x)/2)*a),x)*t 
an((c + d*x)/2)**2*a*b**2*d + 4*log(tan((c + d*x)/2)**2 + 1)*tan((c + d*x) 
/2)**2*a**2 - 224*log(tan((c + d*x)/2)**2 + 1)*tan((c + d*x)/2)**2*a*b ...