\(\int \frac {a+a \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [152]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 111 \[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {6 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {6 a \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \] Output:

-6/5*a*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a*InverseJacobiAM(1/2*d 
*x+1/2*c,2^(1/2))/d+2/5*a*sin(d*x+c)/d/cos(d*x+c)^(5/2)+2/3*a*sin(d*x+c)/d 
/cos(d*x+c)^(3/2)+6/5*a*sin(d*x+c)/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 6.46 (sec) , antiderivative size = 477, normalized size of antiderivative = 4.30 \[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=a \left (\sqrt {\cos (c+d x)} (1+\cos (c+d x)) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {3 \csc (c) \sec (c)}{5 d}+\frac {\sec (c) \sec ^3(c+d x) \sin (d x)}{5 d}+\frac {\sec (c) \sec ^2(c+d x) (3 \sin (c)+5 \sin (d x))}{15 d}+\frac {\sec (c) \sec (c+d x) (5 \sin (c)+9 \sin (d x))}{15 d}\right )-\frac {(1+\cos (c+d x)) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d \sqrt {1+\cot ^2(c)}}+\frac {3 (1+\cos (c+d x)) \csc (c) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{10 d}\right ) \] Input:

Integrate[(a + a*Cos[c + d*x])/Cos[c + d*x]^(7/2),x]
 

Output:

a*(Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])*Sec[c/2 + (d*x)/2]^2*((3*Csc[c]*S 
ec[c])/(5*d) + (Sec[c]*Sec[c + d*x]^3*Sin[d*x])/(5*d) + (Sec[c]*Sec[c + d* 
x]^2*(3*Sin[c] + 5*Sin[d*x]))/(15*d) + (Sec[c]*Sec[c + d*x]*(5*Sin[c] + 9* 
Sin[d*x]))/(15*d)) - ((1 + Cos[c + d*x])*Csc[c]*HypergeometricPFQ[{1/4, 1/ 
2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^2*Sec[d*x - Arc 
Tan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2] 
*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/( 
3*d*Sqrt[1 + Cot[c]^2]) + (3*(1 + Cos[c + d*x])*Csc[c]*Sec[c/2 + (d*x)/2]^ 
2*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Si 
n[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[ 
1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[ 
1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/S 
qrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^ 
2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + 
Tan[c]^2]]))/(10*d))
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.02, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 3227, 3042, 3116, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a \cos (c+d x)+a}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a \sin \left (c+d x+\frac {\pi }{2}\right )+a}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3227

\(\displaystyle a \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x)}dx+a \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+a \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3116

\(\displaystyle a \left (\frac {3}{5} \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+a \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {3}{5} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+a \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3116

\(\displaystyle a \left (\frac {3}{5} \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )+\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+a \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+a \left (\frac {3}{5} \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle a \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+a \left (\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {3}{5} \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle a \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+a \left (\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {3}{5} \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )\)

Input:

Int[(a + a*Cos[c + d*x])/Cos[c + d*x]^(7/2),x]
 

Output:

a*((2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*Sin[c + d*x])/(3*d*Cos[c + d*x 
]^(3/2))) + a*((2*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (3*((-2*Ellipti 
cE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])))/5)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(383\) vs. \(2(98)=196\).

Time = 4.31 (sec) , antiderivative size = 384, normalized size of antiderivative = 3.46

method result size
default \(-\frac {4 \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{40 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{3}}-\frac {3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{5 \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {7 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{15 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{10 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{12 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(384\)
parts \(-\frac {2 a \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-24 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{5 \left (8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+6 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a \left (-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) d}\) \(573\)

Input:

int((a+a*cos(d*x+c))/cos(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-4*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(-1/40*cos( 
1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1 
/2*d*x+1/2*c)^2-1/2)^3-3/5*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*c 
os(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)+7/15*(sin(1/2*d*x+1/2*c 
)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin( 
1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3/10*(sin(1/ 
2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/ 
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))- 
EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-1/12*cos(1/2*d*x+1/2*c)*(-2*sin(1/2 
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2)/si 
n(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.69 \[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {-5 i \, \sqrt {2} a \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} a \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 i \, \sqrt {2} a \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 9 i \, \sqrt {2} a \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (9 \, a \cos \left (d x + c\right )^{2} + 5 \, a \cos \left (d x + c\right ) + 3 \, a\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, d \cos \left (d x + c\right )^{3}} \] Input:

integrate((a+a*cos(d*x+c))/cos(d*x+c)^(7/2),x, algorithm="fricas")
 

Output:

1/15*(-5*I*sqrt(2)*a*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c 
) + I*sin(d*x + c)) + 5*I*sqrt(2)*a*cos(d*x + c)^3*weierstrassPInverse(-4, 
 0, cos(d*x + c) - I*sin(d*x + c)) - 9*I*sqrt(2)*a*cos(d*x + c)^3*weierstr 
assZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) 
+ 9*I*sqrt(2)*a*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse( 
-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(9*a*cos(d*x + c)^2 + 5*a*cos(d 
*x + c) + 3*a)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^3)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))/cos(d*x+c)**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))/cos(d*x+c)^(7/2),x, algorithm="maxima")
 

Output:

integrate((a*cos(d*x + c) + a)/cos(d*x + c)^(7/2), x)
 

Giac [F]

\[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))/cos(d*x+c)^(7/2),x, algorithm="giac")
 

Output:

integrate((a*cos(d*x + c) + a)/cos(d*x + c)^(7/2), x)
 

Mupad [B] (verification not implemented)

Time = 40.97 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.78 \[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int((a + a*cos(c + d*x))/cos(c + d*x)^(7/2),x)
 

Output:

(2*a*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c 
+ d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (2*a*sin(c + d*x)*hypergeom([-5/4, 
1/2], -1/4, cos(c + d*x)^2))/(5*d*cos(c + d*x)^(5/2)*(sin(c + d*x)^2)^(1/2 
))
 

Reduce [F]

\[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=a \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x +\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) \] Input:

int((a+a*cos(d*x+c))/cos(d*x+c)^(7/2),x)
 

Output:

a*(int(sqrt(cos(c + d*x))/cos(c + d*x)**4,x) + int(sqrt(cos(c + d*x))/cos( 
c + d*x)**3,x))