\(\int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2 \, dx\) [153]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 147 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2 \, dx=\frac {32 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {20 a^2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {20 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {32 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {4 a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {2 a^2 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d} \] Output:

32/15*a^2*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+20/21*a^2*InverseJacobiA 
M(1/2*d*x+1/2*c,2^(1/2))/d+20/21*a^2*cos(d*x+c)^(1/2)*sin(d*x+c)/d+32/45*a 
^2*cos(d*x+c)^(3/2)*sin(d*x+c)/d+4/7*a^2*cos(d*x+c)^(5/2)*sin(d*x+c)/d+2/9 
*a^2*cos(d*x+c)^(7/2)*sin(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 6.63 (sec) , antiderivative size = 532, normalized size of antiderivative = 3.62 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2 \, dx=\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-\frac {8 \cot (c)}{15 d}+\frac {23 \cos (d x) \sin (c)}{84 d}+\frac {37 \cos (2 d x) \sin (2 c)}{360 d}+\frac {\cos (3 d x) \sin (3 c)}{28 d}+\frac {\cos (4 d x) \sin (4 c)}{144 d}+\frac {23 \cos (c) \sin (d x)}{84 d}+\frac {37 \cos (2 c) \sin (2 d x)}{360 d}+\frac {\cos (3 c) \sin (3 d x)}{28 d}+\frac {\cos (4 c) \sin (4 d x)}{144 d}\right )-\frac {5 (a+a \cos (c+d x))^2 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{21 d \sqrt {1+\cot ^2(c)}}-\frac {4 (a+a \cos (c+d x))^2 \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{15 d} \] Input:

Integrate[Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])^2,x]
 

Output:

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2*Sec[c/2 + (d*x)/2]^4*((-8*Cot[c] 
)/(15*d) + (23*Cos[d*x]*Sin[c])/(84*d) + (37*Cos[2*d*x]*Sin[2*c])/(360*d) 
+ (Cos[3*d*x]*Sin[3*c])/(28*d) + (Cos[4*d*x]*Sin[4*c])/(144*d) + (23*Cos[c 
]*Sin[d*x])/(84*d) + (37*Cos[2*c]*Sin[2*d*x])/(360*d) + (Cos[3*c]*Sin[3*d* 
x])/(28*d) + (Cos[4*c]*Sin[4*d*x])/(144*d)) - (5*(a + a*Cos[c + d*x])^2*Cs 
c[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec 
[c/2 + (d*x)/2]^4*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[ 
c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 
+ Sin[d*x - ArcTan[Cot[c]]]])/(21*d*Sqrt[1 + Cot[c]^2]) - (4*(a + a*Cos[c 
+ d*x])^2*Csc[c]*Sec[c/2 + (d*x)/2]^4*((HypergeometricPFQ[{-1/2, -1/4}, {3 
/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[ 
1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Co 
s[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ( 
(Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d* 
x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c] 
*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(15*d)
 

Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3042, 3236, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a)^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2dx\)

\(\Big \downarrow \) 3236

\(\displaystyle \int \left (a^2 \cos ^{\frac {9}{2}}(c+d x)+2 a^2 \cos ^{\frac {7}{2}}(c+d x)+a^2 \cos ^{\frac {5}{2}}(c+d x)\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {20 a^2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {32 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 a^2 \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}+\frac {4 a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}+\frac {32 a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{45 d}+\frac {20 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{21 d}\)

Input:

Int[Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])^2,x]
 

Output:

(32*a^2*EllipticE[(c + d*x)/2, 2])/(15*d) + (20*a^2*EllipticF[(c + d*x)/2, 
 2])/(21*d) + (20*a^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(21*d) + (32*a^2*Co 
s[c + d*x]^(3/2)*Sin[c + d*x])/(45*d) + (4*a^2*Cos[c + d*x]^(5/2)*Sin[c + 
d*x])/(7*d) + (2*a^2*Cos[c + d*x]^(7/2)*Sin[c + d*x])/(9*d)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3236
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*( 
x_)])^(m_.), x_Symbol] :> Int[ExpandTrig[(a + b*sin[e + f*x])^m*(d*sin[e + 
f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IGt 
Q[m, 0] && RationalQ[n]
 
Maple [A] (verified)

Time = 18.41 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.77

method result size
default \(-\frac {4 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{2} \left (560 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}-960 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}+608 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}-96 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-205 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+75 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-168 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+93 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{315 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(260\)
parts \(-\frac {2 a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (160 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}-480 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}+616 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}-432 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+160 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}-21 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{45 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {4 a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (48 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}-120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-72 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(621\)

Input:

int(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

-4/315*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(560*co 
s(1/2*d*x+1/2*c)^11-960*cos(1/2*d*x+1/2*c)^9+608*cos(1/2*d*x+1/2*c)^7-96*c 
os(1/2*d*x+1/2*c)^5-205*cos(1/2*d*x+1/2*c)^3+75*(sin(1/2*d*x+1/2*c)^2)^(1/ 
2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)) 
-168*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellipt 
icE(cos(1/2*d*x+1/2*c),2^(1/2))+93*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c) 
^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.19 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2 \, dx=-\frac {2 \, {\left (75 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 75 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 168 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 168 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (35 \, a^{2} \cos \left (d x + c\right )^{3} + 90 \, a^{2} \cos \left (d x + c\right )^{2} + 112 \, a^{2} \cos \left (d x + c\right ) + 150 \, a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{315 \, d} \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))^2,x, algorithm="fricas")
 

Output:

-2/315*(75*I*sqrt(2)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d 
*x + c)) - 75*I*sqrt(2)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*si 
n(d*x + c)) - 168*I*sqrt(2)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse 
(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 168*I*sqrt(2)*a^2*weierstrassZet 
a(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (35* 
a^2*cos(d*x + c)^3 + 90*a^2*cos(d*x + c)^2 + 112*a^2*cos(d*x + c) + 150*a^ 
2)*sqrt(cos(d*x + c))*sin(d*x + c))/d
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2 \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(5/2)*(a+a*cos(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2 \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))^2,x, algorithm="maxima")
 

Output:

integrate((a*cos(d*x + c) + a)^2*cos(d*x + c)^(5/2), x)
 

Giac [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2 \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))^2,x, algorithm="giac")
 

Output:

integrate((a*cos(d*x + c) + a)^2*cos(d*x + c)^(5/2), x)
 

Mupad [B] (verification not implemented)

Time = 40.91 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.93 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2 \, dx=-\frac {2\,a^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {4\,a^2\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,a^2\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {15}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{11\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^2,x)
 

Output:

- (2*a^2*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c 
 + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (4*a^2*cos(c + d*x)^(9/2)*sin(c 
 + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2) 
^(1/2)) - (2*a^2*cos(c + d*x)^(11/2)*sin(c + d*x)*hypergeom([1/2, 11/4], 1 
5/4, cos(c + d*x)^2))/(11*d*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2 \, dx=a^{2} \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{4}d x +2 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right )+\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) \] Input:

int(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))^2,x)
 

Output:

a**2*(int(sqrt(cos(c + d*x))*cos(c + d*x)**4,x) + 2*int(sqrt(cos(c + d*x)) 
*cos(c + d*x)**3,x) + int(sqrt(cos(c + d*x))*cos(c + d*x)**2,x))