\(\int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \, dx\) [160]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 147 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \, dx=\frac {68 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {44 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {44 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {68 a^3 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {6 a^3 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {2 a^3 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d} \] Output:

68/15*a^3*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+44/21*a^3*InverseJacobiA 
M(1/2*d*x+1/2*c,2^(1/2))/d+44/21*a^3*cos(d*x+c)^(1/2)*sin(d*x+c)/d+68/45*a 
^3*cos(d*x+c)^(3/2)*sin(d*x+c)/d+6/7*a^3*cos(d*x+c)^(5/2)*sin(d*x+c)/d+2/9 
*a^3*cos(d*x+c)^(7/2)*sin(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.30 (sec) , antiderivative size = 532, normalized size of antiderivative = 3.62 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \, dx=\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-\frac {17 \cot (c)}{30 d}+\frac {97 \cos (d x) \sin (c)}{336 d}+\frac {73 \cos (2 d x) \sin (2 c)}{720 d}+\frac {3 \cos (3 d x) \sin (3 c)}{112 d}+\frac {\cos (4 d x) \sin (4 c)}{288 d}+\frac {97 \cos (c) \sin (d x)}{336 d}+\frac {73 \cos (2 c) \sin (2 d x)}{720 d}+\frac {3 \cos (3 c) \sin (3 d x)}{112 d}+\frac {\cos (4 c) \sin (4 d x)}{288 d}\right )-\frac {11 (a+a \cos (c+d x))^3 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{42 d \sqrt {1+\cot ^2(c)}}-\frac {17 (a+a \cos (c+d x))^3 \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{60 d} \] Input:

Integrate[Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^3,x]
 

Output:

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*((-17*Cot[c 
])/(30*d) + (97*Cos[d*x]*Sin[c])/(336*d) + (73*Cos[2*d*x]*Sin[2*c])/(720*d 
) + (3*Cos[3*d*x]*Sin[3*c])/(112*d) + (Cos[4*d*x]*Sin[4*c])/(288*d) + (97* 
Cos[c]*Sin[d*x])/(336*d) + (73*Cos[2*c]*Sin[2*d*x])/(720*d) + (3*Cos[3*c]* 
Sin[3*d*x])/(112*d) + (Cos[4*c]*Sin[4*d*x])/(288*d)) - (11*(a + a*Cos[c + 
d*x])^3*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c 
]]]^2]*Sec[c/2 + (d*x)/2]^6*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - A 
rcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]] 
)]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(42*d*Sqrt[1 + Cot[c]^2]) - (17*(a 
 + a*Cos[c + d*x])^3*Csc[c]*Sec[c/2 + (d*x)/2]^6*((HypergeometricPFQ[{-1/2 
, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan 
[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c] 
]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan 
[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[ 
c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/ 
Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(60*d)
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3042, 3236, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3dx\)

\(\Big \downarrow \) 3236

\(\displaystyle \int \left (a^3 \cos ^{\frac {9}{2}}(c+d x)+3 a^3 \cos ^{\frac {7}{2}}(c+d x)+3 a^3 \cos ^{\frac {5}{2}}(c+d x)+a^3 \cos ^{\frac {3}{2}}(c+d x)\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {44 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {68 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 a^3 \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}+\frac {6 a^3 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}+\frac {68 a^3 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{45 d}+\frac {44 a^3 \sin (c+d x) \sqrt {\cos (c+d x)}}{21 d}\)

Input:

Int[Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^3,x]
 

Output:

(68*a^3*EllipticE[(c + d*x)/2, 2])/(15*d) + (44*a^3*EllipticF[(c + d*x)/2, 
 2])/(21*d) + (44*a^3*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(21*d) + (68*a^3*Co 
s[c + d*x]^(3/2)*Sin[c + d*x])/(45*d) + (6*a^3*Cos[c + d*x]^(5/2)*Sin[c + 
d*x])/(7*d) + (2*a^3*Cos[c + d*x]^(7/2)*Sin[c + d*x])/(9*d)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3236
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*( 
x_)])^(m_.), x_Symbol] :> Int[ExpandTrig[(a + b*sin[e + f*x])^m*(d*sin[e + 
f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IGt 
Q[m, 0] && RationalQ[n]
 
Maple [A] (verified)

Time = 17.19 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.77

method result size
default \(-\frac {4 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{3} \left (560 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}-600 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}+212 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+66 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-430 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+165 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-357 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+192 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{315 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(260\)
parts \(\text {Expression too large to display}\) \(802\)

Input:

int(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^3,x,method=_RETURNVERBOSE)
 

Output:

-4/315*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(560*co 
s(1/2*d*x+1/2*c)^11-600*cos(1/2*d*x+1/2*c)^9+212*cos(1/2*d*x+1/2*c)^7+66*c 
os(1/2*d*x+1/2*c)^5-430*cos(1/2*d*x+1/2*c)^3+165*(sin(1/2*d*x+1/2*c)^2)^(1 
/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2) 
)-357*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellip 
ticE(cos(1/2*d*x+1/2*c),2^(1/2))+192*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1 
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2* 
c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.19 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \, dx=-\frac {2 \, {\left (165 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 165 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 357 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 357 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (35 \, a^{3} \cos \left (d x + c\right )^{3} + 135 \, a^{3} \cos \left (d x + c\right )^{2} + 238 \, a^{3} \cos \left (d x + c\right ) + 330 \, a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{315 \, d} \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^3,x, algorithm="fricas")
 

Output:

-2/315*(165*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin( 
d*x + c)) - 165*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I* 
sin(d*x + c)) - 357*I*sqrt(2)*a^3*weierstrassZeta(-4, 0, weierstrassPInver 
se(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 357*I*sqrt(2)*a^3*weierstrassZ 
eta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (3 
5*a^3*cos(d*x + c)^3 + 135*a^3*cos(d*x + c)^2 + 238*a^3*cos(d*x + c) + 330 
*a^3)*sqrt(cos(d*x + c))*sin(d*x + c))/d
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(3/2)*(a+a*cos(d*x+c))**3,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^3,x, algorithm="maxima")
 

Output:

integrate((a*cos(d*x + c) + a)^3*cos(d*x + c)^(3/2), x)
 

Giac [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^3,x, algorithm="giac")
 

Output:

integrate((a*cos(d*x + c) + a)^3*cos(d*x + c)^(3/2), x)
 

Mupad [B] (verification not implemented)

Time = 41.03 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.40 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \, dx=\frac {2\,\left (a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+a^3\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )\right )}{3\,d}-\frac {2\,\left (\frac {33\,a^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )}{\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {5\,a^3\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )}{\sqrt {{\sin \left (c+d\,x\right )}^2}}\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {15}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{77\,d}-\frac {2\,a^3\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {104\,a^3\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {19}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{385\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^3,x)
 

Output:

(2*(a^3*ellipticF(c/2 + (d*x)/2, 2) + a^3*cos(c + d*x)^(1/2)*sin(c + d*x)) 
)/(3*d) - (2*((33*a^3*cos(c + d*x)^(7/2)*sin(c + d*x))/(sin(c + d*x)^2)^(1 
/2) - (5*a^3*cos(c + d*x)^(11/2)*sin(c + d*x))/(sin(c + d*x)^2)^(1/2))*hyp 
ergeom([1/2, 11/4], 15/4, cos(c + d*x)^2))/(77*d) - (2*a^3*cos(c + d*x)^(9 
/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(3*d*(sin(c 
+ d*x)^2)^(1/2)) - (104*a^3*cos(c + d*x)^(11/2)*sin(c + d*x)*hypergeom([1/ 
2, 11/4], 19/4, cos(c + d*x)^2))/(385*d*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \, dx=a^{3} \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x +\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{4}d x +3 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right )+3 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right )\right ) \] Input:

int(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^3,x)
 

Output:

a**3*(int(sqrt(cos(c + d*x))*cos(c + d*x),x) + int(sqrt(cos(c + d*x))*cos( 
c + d*x)**4,x) + 3*int(sqrt(cos(c + d*x))*cos(c + d*x)**3,x) + 3*int(sqrt( 
cos(c + d*x))*cos(c + d*x)**2,x))