\(\int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \, dx\) [161]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 121 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \, dx=\frac {28 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {52 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {52 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {6 a^3 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a^3 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d} \] Output:

28/5*a^3*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+52/21*a^3*InverseJacobiAM 
(1/2*d*x+1/2*c,2^(1/2))/d+52/21*a^3*cos(d*x+c)^(1/2)*sin(d*x+c)/d+6/5*a^3* 
cos(d*x+c)^(3/2)*sin(d*x+c)/d+2/7*a^3*cos(d*x+c)^(5/2)*sin(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.28 (sec) , antiderivative size = 500, normalized size of antiderivative = 4.13 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \, dx=\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-\frac {7 \cot (c)}{10 d}+\frac {107 \cos (d x) \sin (c)}{336 d}+\frac {3 \cos (2 d x) \sin (2 c)}{40 d}+\frac {\cos (3 d x) \sin (3 c)}{112 d}+\frac {107 \cos (c) \sin (d x)}{336 d}+\frac {3 \cos (2 c) \sin (2 d x)}{40 d}+\frac {\cos (3 c) \sin (3 d x)}{112 d}\right )-\frac {13 (a+a \cos (c+d x))^3 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{42 d \sqrt {1+\cot ^2(c)}}-\frac {7 (a+a \cos (c+d x))^3 \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{20 d} \] Input:

Integrate[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3,x]
 

Output:

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*((-7*Cot[c] 
)/(10*d) + (107*Cos[d*x]*Sin[c])/(336*d) + (3*Cos[2*d*x]*Sin[2*c])/(40*d) 
+ (Cos[3*d*x]*Sin[3*c])/(112*d) + (107*Cos[c]*Sin[d*x])/(336*d) + (3*Cos[2 
*c]*Sin[2*d*x])/(40*d) + (Cos[3*c]*Sin[3*d*x])/(112*d)) - (13*(a + a*Cos[c 
 + d*x])^3*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Co 
t[c]]]^2]*Sec[c/2 + (d*x)/2]^6*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x 
- ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c 
]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(42*d*Sqrt[1 + Cot[c]^2]) - (7* 
(a + a*Cos[c + d*x])^3*Csc[c]*Sec[c/2 + (d*x)/2]^6*((HypergeometricPFQ[{-1 
/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*T 
an[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[ 
c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + T 
an[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Co 
s[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2) 
)/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(20*d)
 

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3042, 3236, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3dx\)

\(\Big \downarrow \) 3236

\(\displaystyle \int \left (a^3 \cos ^{\frac {7}{2}}(c+d x)+3 a^3 \cos ^{\frac {5}{2}}(c+d x)+3 a^3 \cos ^{\frac {3}{2}}(c+d x)+a^3 \sqrt {\cos (c+d x)}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {52 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {28 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^3 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}+\frac {6 a^3 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}+\frac {52 a^3 \sin (c+d x) \sqrt {\cos (c+d x)}}{21 d}\)

Input:

Int[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3,x]
 

Output:

(28*a^3*EllipticE[(c + d*x)/2, 2])/(5*d) + (52*a^3*EllipticF[(c + d*x)/2, 
2])/(21*d) + (52*a^3*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(21*d) + (6*a^3*Cos[ 
c + d*x]^(3/2)*Sin[c + d*x])/(5*d) + (2*a^3*Cos[c + d*x]^(5/2)*Sin[c + d*x 
])/(7*d)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3236
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*( 
x_)])^(m_.), x_Symbol] :> Int[ExpandTrig[(a + b*sin[e + f*x])^m*(d*sin[e + 
f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IGt 
Q[m, 0] && RationalQ[n]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(271\) vs. \(2(108)=216\).

Time = 11.49 (sec) , antiderivative size = 272, normalized size of antiderivative = 2.25

method result size
default \(-\frac {4 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{3} \left (120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-432 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+602 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-208 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+65 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{105 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(272\)
parts \(\frac {2 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (48 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}-120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-72 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {6 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(723\)

Input:

int(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^3,x,method=_RETURNVERBOSE)
 

Output:

-4/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(120*co 
s(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8-432*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1 
/2*c)^6+602*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-208*sin(1/2*d*x+1/2*c) 
^2*cos(1/2*d*x+1/2*c)+65*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c 
)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*(sin(1/2*d*x+1/2*c) 
^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^ 
(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1 
/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.34 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \, dx=-\frac {2 \, {\left (65 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 65 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 147 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 147 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (15 \, a^{3} \cos \left (d x + c\right )^{2} + 63 \, a^{3} \cos \left (d x + c\right ) + 130 \, a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{105 \, d} \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^3,x, algorithm="fricas")
 

Output:

-2/105*(65*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d 
*x + c)) - 65*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*si 
n(d*x + c)) - 147*I*sqrt(2)*a^3*weierstrassZeta(-4, 0, weierstrassPInverse 
(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 147*I*sqrt(2)*a^3*weierstrassZet 
a(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (15* 
a^3*cos(d*x + c)^2 + 63*a^3*cos(d*x + c) + 130*a^3)*sqrt(cos(d*x + c))*sin 
(d*x + c))/d
 

Sympy [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(1/2)*(a+a*cos(d*x+c))**3,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\cos \left (d x + c\right )} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^3,x, algorithm="maxima")
 

Output:

integrate((a*cos(d*x + c) + a)^3*sqrt(cos(d*x + c)), x)
 

Giac [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\cos \left (d x + c\right )} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^3,x, algorithm="giac")
 

Output:

integrate((a*cos(d*x + c) + a)^3*sqrt(cos(d*x + c)), x)
 

Mupad [B] (verification not implemented)

Time = 40.99 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.18 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \, dx=\frac {2\,\left (a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+a^3\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )\right )}{d}-\frac {6\,a^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,a^3\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^3,x)
 

Output:

(2*(a^3*ellipticE(c/2 + (d*x)/2, 2) + a^3*ellipticF(c/2 + (d*x)/2, 2) + a^ 
3*cos(c + d*x)^(1/2)*sin(c + d*x)))/d - (6*a^3*cos(c + d*x)^(7/2)*sin(c + 
d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1 
/2)) - (2*a^3*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, 
cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \, dx=a^{3} \left (\int \sqrt {\cos \left (d x +c \right )}d x +3 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right )+\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x +3 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right )\right ) \] Input:

int(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^3,x)
 

Output:

a**3*(int(sqrt(cos(c + d*x)),x) + 3*int(sqrt(cos(c + d*x))*cos(c + d*x),x) 
 + int(sqrt(cos(c + d*x))*cos(c + d*x)**3,x) + 3*int(sqrt(cos(c + d*x))*co 
s(c + d*x)**2,x))