\(\int \frac {(a+a \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx\) [162]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 91 \[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx=\frac {36 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{d}+\frac {2 a^3 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d} \] Output:

36/5*a^3*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4*a^3*InverseJacobiAM(1/2 
*d*x+1/2*c,2^(1/2))/d+2*a^3*cos(d*x+c)^(1/2)*sin(d*x+c)/d+2/5*a^3*cos(d*x+ 
c)^(3/2)*sin(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.31 (sec) , antiderivative size = 468, normalized size of antiderivative = 5.14 \[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx=\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-\frac {9 \cot (c)}{10 d}+\frac {\cos (d x) \sin (c)}{4 d}+\frac {\cos (2 d x) \sin (2 c)}{40 d}+\frac {\cos (c) \sin (d x)}{4 d}+\frac {\cos (2 c) \sin (2 d x)}{40 d}\right )-\frac {(a+a \cos (c+d x))^3 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{2 d \sqrt {1+\cot ^2(c)}}-\frac {9 (a+a \cos (c+d x))^3 \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{20 d} \] Input:

Integrate[(a + a*Cos[c + d*x])^3/Sqrt[Cos[c + d*x]],x]
 

Output:

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*((-9*Cot[c] 
)/(10*d) + (Cos[d*x]*Sin[c])/(4*d) + (Cos[2*d*x]*Sin[2*c])/(40*d) + (Cos[c 
]*Sin[d*x])/(4*d) + (Cos[2*c]*Sin[2*d*x])/(40*d)) - ((a + a*Cos[c + d*x])^ 
3*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2] 
*Sec[c/2 + (d*x)/2]^6*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[ 
Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqr 
t[1 + Sin[d*x - ArcTan[Cot[c]]]])/(2*d*Sqrt[1 + Cot[c]^2]) - (9*(a + a*Cos 
[c + d*x])^3*Csc[c]*Sec[c/2 + (d*x)/2]^6*((HypergeometricPFQ[{-1/2, -1/4}, 
 {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sq 
rt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt 
[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) 
- ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos 
[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos 
[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(20*d)
 

Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3042, 3236, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^3}{\sqrt {\cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3236

\(\displaystyle \int \left (a^3 \cos ^{\frac {5}{2}}(c+d x)+3 a^3 \cos ^{\frac {3}{2}}(c+d x)+3 a^3 \sqrt {\cos (c+d x)}+\frac {a^3}{\sqrt {\cos (c+d x)}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {4 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {36 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^3 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}+\frac {2 a^3 \sin (c+d x) \sqrt {\cos (c+d x)}}{d}\)

Input:

Int[(a + a*Cos[c + d*x])^3/Sqrt[Cos[c + d*x]],x]
 

Output:

(36*a^3*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a^3*EllipticF[(c + d*x)/2, 2 
])/d + (2*a^3*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/d + (2*a^3*Cos[c + d*x]^(3/ 
2)*Sin[c + d*x])/(5*d)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3236
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*( 
x_)])^(m_.), x_Symbol] :> Int[ExpandTrig[(a + b*sin[e + f*x])^m*(d*sin[e + 
f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IGt 
Q[m, 0] && RationalQ[n]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(249\) vs. \(2(86)=172\).

Time = 6.57 (sec) , antiderivative size = 250, normalized size of antiderivative = 2.75

method result size
default \(-\frac {4 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{3} \left (-4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+14 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-6 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(250\)
parts \(\frac {2 a^{3} \operatorname {InverseJacobiAM}\left (\frac {d x}{2}+\frac {c}{2}, \sqrt {2}\right )}{d}-\frac {2 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {6 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(542\)

Input:

int((a+a*cos(d*x+c))^3/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-4/5*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(-4*cos(1 
/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+14*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2 
*c)-6*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+5*(sin(1/2*d*x+1/2*c)^2)^(1/ 
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))- 
9*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE( 
cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2 
)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.63 \[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 9 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (a^{3} \cos \left (d x + c\right ) + 5 \, a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{5 \, d} \] Input:

integrate((a+a*cos(d*x+c))^3/cos(d*x+c)^(1/2),x, algorithm="fricas")
 

Output:

-2/5*(5*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x 
+ c)) - 5*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d* 
x + c)) - 9*I*sqrt(2)*a^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0 
, cos(d*x + c) + I*sin(d*x + c))) + 9*I*sqrt(2)*a^3*weierstrassZeta(-4, 0, 
 weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (a^3*cos(d*x 
 + c) + 5*a^3)*sqrt(cos(d*x + c))*sin(d*x + c))/d
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**3/cos(d*x+c)**(1/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^3/cos(d*x+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate((a*cos(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)
 

Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^3/cos(d*x+c)^(1/2),x, algorithm="giac")
 

Output:

integrate((a*cos(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)
 

Mupad [B] (verification not implemented)

Time = 41.00 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.14 \[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx=\frac {6\,a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a^3\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{d}-\frac {2\,a^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int((a + a*cos(c + d*x))^3/cos(c + d*x)^(1/2),x)
 

Output:

(6*a^3*ellipticE(c/2 + (d*x)/2, 2))/d + (4*a^3*ellipticF(c/2 + (d*x)/2, 2) 
)/d + (2*a^3*cos(c + d*x)^(1/2)*sin(c + d*x))/d - (2*a^3*cos(c + d*x)^(7/2 
)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + 
d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx=a^{3} \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x +3 \left (\int \sqrt {\cos \left (d x +c \right )}d x \right )+3 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right )+\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) \] Input:

int((a+a*cos(d*x+c))^3/cos(d*x+c)^(1/2),x)
 

Output:

a**3*(int(sqrt(cos(c + d*x))/cos(c + d*x),x) + 3*int(sqrt(cos(c + d*x)),x) 
 + 3*int(sqrt(cos(c + d*x))*cos(c + d*x),x) + int(sqrt(cos(c + d*x))*cos(c 
 + d*x)**2,x))