\(\int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx\) [178]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 70 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))} \] Output:

EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+InverseJacobiAM(1/2*d*x+1/2*c,2^ 
(1/2))/a/d-cos(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.76 (sec) , antiderivative size = 257, normalized size of antiderivative = 3.67 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (\frac {2 i \sqrt {2} e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}+\left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )-e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{d \left (-1+e^{2 i c}\right ) \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}-\frac {2 \sqrt {\cos (c+d x)} \left (\csc (c)+\sec \left (\frac {c}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {d x}{2}\right )\right )}{d}\right )}{a (1+\cos (c+d x))} \] Input:

Integrate[1/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])),x]
 

Output:

(Cos[(c + d*x)/2]^2*(((2*I)*Sqrt[2]*(1 + E^((2*I)*(c + d*x)) + (-1 + E^((2 
*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E 
^((2*I)*(c + d*x))] - E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I) 
*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(d*E 
^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + 
 d*x))]) - (2*Sqrt[Cos[c + d*x]]*(Csc[c] + Sec[c/2]*Sec[(c + d*x)/2]*Sin[( 
d*x)/2]))/d))/(a*(1 + Cos[c + d*x]))
 

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.09, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3042, 3247, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {\cos (c+d x)} (a \cos (c+d x)+a)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 3247

\(\displaystyle -\frac {\int -\frac {\cos (c+d x) a+a}{2 \sqrt {\cos (c+d x)}}dx}{a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\cos (c+d x) a+a}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {a \int \frac {1}{\sqrt {\cos (c+d x)}}dx+a \int \sqrt {\cos (c+d x)}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

Input:

Int[1/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])),x]
 

Output:

((2*a*EllipticE[(c + d*x)/2, 2])/d + (2*a*EllipticF[(c + d*x)/2, 2])/d)/(2 
*a^2) - (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3247
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(b*c - a*d)*(a + b*Sin[e + f*x]))), x] + Simp[d/(a*(b*c - a*d)) 
   Int[(c + d*Sin[e + f*x])^n*(a*n - b*(n + 1)*Sin[e + f*x]), x], x] /; Fre 
eQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[ 
c^2 - d^2, 0] && LtQ[n, 0] && (IntegerQ[2*n] || EqQ[c, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(199\) vs. \(2(71)=142\).

Time = 1.02 (sec) , antiderivative size = 200, normalized size of antiderivative = 2.86

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(200\)

Input:

int(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d*x+1/2* 
c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(Elliptic 
F(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*sin 
(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d 
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+ 
1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.08 (sec) , antiderivative size = 184, normalized size of antiderivative = 2.63 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\frac {{\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \] Input:

integrate(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")
 

Output:

1/2*((-I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos( 
d*x + c) + I*sin(d*x + c)) + (I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstr 
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + (I*sqrt(2)*cos(d*x + c 
) + I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
 c) + I*sin(d*x + c))) + (-I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrass 
Zeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2 
*sqrt(cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d)
 

Sympy [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\frac {\int \frac {1}{\cos ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\cos {\left (c + d x \right )}}}\, dx}{a} \] Input:

integrate(1/cos(d*x+c)**(1/2)/(a+a*cos(d*x+c)),x)
 

Output:

Integral(1/(cos(c + d*x)**(3/2) + sqrt(cos(c + d*x))), x)/a
 

Maxima [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")
 

Output:

integrate(1/((a*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)
 

Giac [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorithm="giac")
 

Output:

integrate(1/((a*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\int \frac {1}{\sqrt {\cos \left (c+d\,x\right )}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \] Input:

int(1/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))),x)
 

Output:

int(1/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\frac {\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}+\cos \left (d x +c \right )}d x}{a} \] Input:

int(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)**2 + cos(c + d*x)),x)/a