\(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \, dx\) [179]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 96 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=-\frac {3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}+\frac {3 \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \] Output:

-3*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-InverseJacobiAM(1/2*d*x+1/2*c 
,2^(1/2))/a/d+3*sin(d*x+c)/a/d/cos(d*x+c)^(1/2)-sin(d*x+c)/d/cos(d*x+c)^(1 
/2)/(a+a*cos(d*x+c))
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.90 (sec) , antiderivative size = 297, normalized size of antiderivative = 3.09 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (-\frac {2 i \sqrt {2} e^{-i (c+d x)} \left (3 \left (1+e^{2 i (c+d x)}\right )+3 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )-e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{d \left (-1+e^{2 i c}\right ) \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}+\frac {\left (2 \cos \left (\frac {1}{2} (c-d x)\right )+\cos \left (\frac {1}{2} (3 c+d x)\right )+3 \cos \left (\frac {1}{2} (c+3 d x)\right )\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right )}{2 d \sqrt {\cos (c+d x)}}\right )}{a (1+\cos (c+d x))} \] Input:

Integrate[1/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])),x]
 

Output:

(Cos[(c + d*x)/2]^2*(((-2*I)*Sqrt[2]*(3*(1 + E^((2*I)*(c + d*x))) + 3*(-1 
+ E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 
3/4, -E^((2*I)*(c + d*x))] - E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E 
^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))] 
))/(d*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^ 
(I*(c + d*x))]) + ((2*Cos[(c - d*x)/2] + Cos[(3*c + d*x)/2] + 3*Cos[(c + 3 
*d*x)/2])*Csc[c/2]*Sec[c/2]*Sec[(c + d*x)/2])/(2*d*Sqrt[Cos[c + d*x]])))/( 
a*(1 + Cos[c + d*x]))
 

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.04, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3042, 3247, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 3247

\(\displaystyle -\frac {\int -\frac {3 a-a \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x)}dx}{a^2}-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {3 a-a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {3 a-a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {3 a \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx-a \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 a \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx-a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {3 a \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )-a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 a \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )-a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {3 a \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {3 a \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

Input:

Int[1/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])),x]
 

Output:

-(Sin[c + d*x]/(d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x]))) + ((-2*a*Ellip 
ticF[(c + d*x)/2, 2])/d + 3*a*((-2*EllipticE[(c + d*x)/2, 2])/d + (2*Sin[c 
 + d*x])/(d*Sqrt[Cos[c + d*x]])))/(2*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3247
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(b*c - a*d)*(a + b*Sin[e + f*x]))), x] + Simp[d/(a*(b*c - a*d)) 
   Int[(c + d*Sin[e + f*x])^n*(a*n - b*(n + 1)*Sin[e + f*x]), x], x] /; Fre 
eQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[ 
c^2 - d^2, 0] && LtQ[n, 0] && (IntegerQ[2*n] || EqQ[c, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(252\) vs. \(2(95)=190\).

Time = 1.95 (sec) , antiderivative size = 253, normalized size of antiderivative = 2.64

method result size
default \(-\frac {-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+6 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(253\)

Input:

int(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

-(-cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c) 
^2)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF( 
cos(1/2*d*x+1/2*c),2^(1/2))-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+6*(-2 
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-5*( 
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2)/ 
a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/ 
sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 236, normalized size of antiderivative = 2.46 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\frac {2 \, {\left (3 \, \cos \left (d x + c\right ) + 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{2 \, {\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \] Input:

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")
 

Output:

1/2*(2*(3*cos(d*x + c) + 2)*sqrt(cos(d*x + c))*sin(d*x + c) + (I*sqrt(2)*c 
os(d*x + c)^2 + I*sqrt(2)*cos(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x 
 + c) + I*sin(d*x + c)) + (-I*sqrt(2)*cos(d*x + c)^2 - I*sqrt(2)*cos(d*x + 
 c))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*(I*sqrt 
(2)*cos(d*x + c)^2 + I*sqrt(2)*cos(d*x + c))*weierstrassZeta(-4, 0, weiers 
trassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*(-I*sqrt(2)*cos(d 
*x + c)^2 - I*sqrt(2)*cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInv 
erse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d*cos(d*x + c)^2 + a*d*cos 
(d*x + c))
 

Sympy [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\frac {\int \frac {1}{\cos ^{\frac {5}{2}}{\left (c + d x \right )} + \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx}{a} \] Input:

integrate(1/cos(d*x+c)**(3/2)/(a+a*cos(d*x+c)),x)
 

Output:

Integral(1/(cos(c + d*x)**(5/2) + cos(c + d*x)**(3/2)), x)/a
 

Maxima [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")
 

Output:

integrate(1/((a*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), x)
 

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c)),x, algorithm="giac")
 

Output:

integrate(1/((a*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \] Input:

int(1/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))),x)
                                                                                    
                                                                                    
 

Output:

int(1/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))), x)
 

Reduce [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\frac {\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}+\cos \left (d x +c \right )^{2}}d x}{a} \] Input:

int(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c)),x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)**3 + cos(c + d*x)**2),x)/a