\(\int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx\) [195]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 155 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx=\frac {9 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac {\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{2 a^3 d}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {2 \sqrt {\cos (c+d x)} \sin (c+d x)}{5 a d (a+a \cos (c+d x))^2}-\frac {9 \sqrt {\cos (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )} \] Output:

9/10*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d+1/2*InverseJacobiAM(1/2*d 
*x+1/2*c,2^(1/2))/a^3/d-1/5*cos(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*cos(d*x+c)) 
^3-2/5*cos(d*x+c)^(1/2)*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^2-9/10*cos(d*x+c)^ 
(1/2)*sin(d*x+c)/d/(a^3+a^3*cos(d*x+c))
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.52 (sec) , antiderivative size = 304, normalized size of antiderivative = 1.96 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx=\frac {\cos ^6\left (\frac {1}{2} (c+d x)\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {36 (3 \cos (c-d x-\arctan (\tan (c)))+\cos (c+d x+\arctan (\tan (c)))) \sec (c)}{\sqrt {\sec ^2(c)}}-\cos (c+d x) \left (62 \cos \left (\frac {1}{2} (c-d x)\right )+28 \cos \left (\frac {1}{2} (3 c+d x)\right )+40 \cos \left (\frac {1}{2} (c+3 d x)\right )+5 \cos \left (\frac {1}{2} (5 c+3 d x)\right )+9 \cos \left (\frac {1}{2} (3 c+5 d x)\right )\right ) \sec ^5\left (\frac {1}{2} (c+d x)\right )-\frac {80 \cos (c+d x) \sqrt {\cos ^2(d x-\arctan (\cot (c)))} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec (d x-\arctan (\cot (c)))}{\sqrt {\csc ^2(c)}}-\frac {72 \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {\sec ^2(c)} \sqrt {\sin ^2(d x+\arctan (\tan (c)))}}\right )}{40 a^3 d \sqrt {\cos (c+d x)} (1+\cos (c+d x))^3} \] Input:

Integrate[1/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3),x]
 

Output:

(Cos[(c + d*x)/2]^6*Csc[c/2]*Sec[c/2]*((36*(3*Cos[c - d*x - ArcTan[Tan[c]] 
] + Cos[c + d*x + ArcTan[Tan[c]]])*Sec[c])/Sqrt[Sec[c]^2] - Cos[c + d*x]*( 
62*Cos[(c - d*x)/2] + 28*Cos[(3*c + d*x)/2] + 40*Cos[(c + 3*d*x)/2] + 5*Co 
s[(5*c + 3*d*x)/2] + 9*Cos[(3*c + 5*d*x)/2])*Sec[(c + d*x)/2]^5 - (80*Cos[ 
c + d*x]*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*HypergeometricPFQ[{1/4, 1/2}, { 
5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]])/Sqrt[Csc[c]^ 
2] - (72*HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^ 
2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[Sec[c]^2]*Sqrt[Sin[d*x + ArcTan 
[Tan[c]]]^2])))/(40*a^3*d*Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])^3)
 

Rubi [A] (verified)

Time = 0.94 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.10, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.565, Rules used = {3042, 3245, 27, 3042, 3457, 3042, 3457, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3245

\(\displaystyle \frac {\int \frac {3 (3 a-a \cos (c+d x))}{2 \sqrt {\cos (c+d x)} (\cos (c+d x) a+a)^2}dx}{5 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \int \frac {3 a-a \cos (c+d x)}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)^2}dx}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \int \frac {3 a-a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {3 \left (\frac {\int \frac {7 a^2-2 a^2 \cos (c+d x)}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {4 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \left (\frac {\int \frac {7 a^2-2 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}-\frac {4 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {3 \left (\frac {\frac {\int \frac {9 \cos (c+d x) a^3+5 a^3}{2 \sqrt {\cos (c+d x)}}dx}{a^2}-\frac {9 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \left (\frac {\frac {\int \frac {9 \cos (c+d x) a^3+5 a^3}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {9 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \left (\frac {\frac {\int \frac {9 \sin \left (c+d x+\frac {\pi }{2}\right ) a^3+5 a^3}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {9 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {3 \left (\frac {\frac {5 a^3 \int \frac {1}{\sqrt {\cos (c+d x)}}dx+9 a^3 \int \sqrt {\cos (c+d x)}dx}{2 a^2}-\frac {9 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \left (\frac {\frac {5 a^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+9 a^3 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {9 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {3 \left (\frac {\frac {5 a^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {18 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {9 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {3 \left (\frac {\frac {\frac {10 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {18 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {9 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

Input:

Int[1/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3),x]
 

Output:

-1/5*(Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^3) + (3*((- 
4*a*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2) + (((18* 
a^3*EllipticE[(c + d*x)/2, 2])/d + (10*a^3*EllipticF[(c + d*x)/2, 2])/d)/( 
2*a^2) - (9*a^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))) 
/(3*a^2)))/(10*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3245
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/( 
a*(2*m + 1)*(b*c - a*d))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + 
f*x])^n*Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ 
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (Intege 
rsQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 
Maple [A] (verified)

Time = 1.65 (sec) , antiderivative size = 268, normalized size of antiderivative = 1.73

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (36 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-10 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+18 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-46 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right )}{20 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(268\)

Input:

int(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x,method=_RETURNVERBOSE)
 

Output:

1/20*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(36*cos(1/2*d 
*x+1/2*c)^8-10*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1 
/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5+18*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*cos(1/2*d*x+1/2*c)^ 
5*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-46*cos(1/2*d*x+1/2*c)^6+8*cos(1/2* 
d*x+1/2*c)^4+cos(1/2*d*x+1/2*c)^2+1)/a^3/cos(1/2*d*x+1/2*c)^5/(-2*sin(1/2* 
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x 
+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 344, normalized size of antiderivative = 2.22 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx=-\frac {2 \, {\left (9 \, \cos \left (d x + c\right )^{2} + 22 \, \cos \left (d x + c\right ) + 15\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 5 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 3 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 3 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 9 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 3 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 9 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 3 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{20 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \] Input:

integrate(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x, algorithm="fricas")
 

Output:

-1/20*(2*(9*cos(d*x + c)^2 + 22*cos(d*x + c) + 15)*sqrt(cos(d*x + c))*sin( 
d*x + c) + 5*(I*sqrt(2)*cos(d*x + c)^3 + 3*I*sqrt(2)*cos(d*x + c)^2 + 3*I* 
sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) 
+ I*sin(d*x + c)) + 5*(-I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(2)*cos(d*x + c 
)^2 - 3*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos 
(d*x + c) - I*sin(d*x + c)) + 9*(-I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(2)*c 
os(d*x + c)^2 - 3*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassZeta(-4, 
0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 9*(I*sqrt( 
2)*cos(d*x + c)^3 + 3*I*sqrt(2)*cos(d*x + c)^2 + 3*I*sqrt(2)*cos(d*x + c) 
+ I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c 
) - I*sin(d*x + c))))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a 
^3*d*cos(d*x + c) + a^3*d)
 

Sympy [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx=\frac {\int \frac {1}{\cos ^{\frac {7}{2}}{\left (c + d x \right )} + 3 \cos ^{\frac {5}{2}}{\left (c + d x \right )} + 3 \cos ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\cos {\left (c + d x \right )}}}\, dx}{a^{3}} \] Input:

integrate(1/cos(d*x+c)**(1/2)/(a+a*cos(d*x+c))**3,x)
 

Output:

Integral(1/(cos(c + d*x)**(7/2) + 3*cos(c + d*x)**(5/2) + 3*cos(c + d*x)** 
(3/2) + sqrt(cos(c + d*x))), x)/a**3
 

Maxima [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x, algorithm="maxima")
 

Output:

integrate(1/((a*cos(d*x + c) + a)^3*sqrt(cos(d*x + c))), x)
 

Giac [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x, algorithm="giac")
 

Output:

integrate(1/((a*cos(d*x + c) + a)^3*sqrt(cos(d*x + c))), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx=\int \frac {1}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3} \,d x \] Input:

int(1/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^3),x)
 

Output:

int(1/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^3), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx=\frac {\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}+3 \cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+\cos \left (d x +c \right )}d x}{a^{3}} \] Input:

int(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)**4 + 3*cos(c + d*x)**3 + 3*cos(c + d* 
x)**2 + cos(c + d*x)),x)/a**3