\(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx\) [196]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 181 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=-\frac {49 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}-\frac {13 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}+\frac {49 \sin (c+d x)}{10 a^3 d \sqrt {\cos (c+d x)}}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3}-\frac {8 \sin (c+d x)}{15 a d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2}-\frac {13 \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} \left (a^3+a^3 \cos (c+d x)\right )} \] Output:

-49/10*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d-13/6*InverseJacobiAM(1/ 
2*d*x+1/2*c,2^(1/2))/a^3/d+49/10*sin(d*x+c)/a^3/d/cos(d*x+c)^(1/2)-1/5*sin 
(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3-8/15*sin(d*x+c)/a/d/cos(d*x+ 
c)^(1/2)/(a+a*cos(d*x+c))^2-13/6*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a^3+a^3*co 
s(d*x+c))
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.35 (sec) , antiderivative size = 364, normalized size of antiderivative = 2.01 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\frac {\cos ^6\left (\frac {1}{2} (c+d x)\right ) \left (-\frac {4 i \sqrt {2} e^{-i (c+d x)} \left (147 \left (1+e^{2 i (c+d x)}\right )+147 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )-65 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{d \left (-1+e^{2 i c}\right ) \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}+\frac {\left (1284 \cos \left (\frac {1}{2} (c-d x)\right )+921 \cos \left (\frac {1}{2} (3 c+d x)\right )+1243 \cos \left (\frac {1}{2} (c+3 d x)\right )+374 \cos \left (\frac {1}{2} (5 c+3 d x)\right )+670 \cos \left (\frac {1}{2} (3 c+5 d x)\right )+65 \cos \left (\frac {1}{2} (7 c+5 d x)\right )+147 \cos \left (\frac {1}{2} (5 c+7 d x)\right )\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec ^5\left (\frac {1}{2} (c+d x)\right )}{16 d \sqrt {\cos (c+d x)}}\right )}{15 a^3 (1+\cos (c+d x))^3} \] Input:

Integrate[1/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^3),x]
 

Output:

(Cos[(c + d*x)/2]^6*(((-4*I)*Sqrt[2]*(147*(1 + E^((2*I)*(c + d*x))) + 147* 
(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1 
/2, 3/4, -E^((2*I)*(c + d*x))] - 65*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqr 
t[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + 
 d*x))]))/(d*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d* 
x)))/E^(I*(c + d*x))]) + ((1284*Cos[(c - d*x)/2] + 921*Cos[(3*c + d*x)/2] 
+ 1243*Cos[(c + 3*d*x)/2] + 374*Cos[(5*c + 3*d*x)/2] + 670*Cos[(3*c + 5*d* 
x)/2] + 65*Cos[(7*c + 5*d*x)/2] + 147*Cos[(5*c + 7*d*x)/2])*Csc[c/2]*Sec[c 
/2]*Sec[(c + d*x)/2]^5)/(16*d*Sqrt[Cos[c + d*x]])))/(15*a^3*(1 + Cos[c + d 
*x])^3)
 

Rubi [A] (verified)

Time = 1.08 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.07, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.652, Rules used = {3042, 3245, 27, 3042, 3457, 3042, 3457, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3245

\(\displaystyle \frac {\int \frac {11 a-5 a \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)^2}dx}{5 a^2}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {11 a-5 a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)^2}dx}{10 a^2}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {11 a-5 a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{10 a^2}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int \frac {41 a^2-24 a^2 \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {16 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {41 a^2-24 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}-\frac {16 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\frac {\int \frac {147 a^3-65 a^3 \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x)}dx}{a^2}-\frac {65 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\int \frac {147 a^3-65 a^3 \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx}{2 a^2}-\frac {65 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\int \frac {147 a^3-65 a^3 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{2 a^2}-\frac {65 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {\frac {147 a^3 \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx-65 a^3 \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {65 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {147 a^3 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx-65 a^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {65 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {\frac {\frac {147 a^3 \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )-65 a^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {65 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {147 a^3 \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )-65 a^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {65 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {\frac {147 a^3 \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-65 a^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {65 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {147 a^3 \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-\frac {130 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{2 a^2}-\frac {65 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\)

Input:

Int[1/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^3),x]
 

Output:

-1/5*Sin[c + d*x]/(d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3) + ((-16*a* 
Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2) + ((-65*a^2* 
Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])) + ((-130*a^3*Ell 
ipticF[(c + d*x)/2, 2])/d + 147*a^3*((-2*EllipticE[(c + d*x)/2, 2])/d + (2 
*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])))/(2*a^2))/(3*a^2))/(10*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3245
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/( 
a*(2*m + 1)*(b*c - a*d))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + 
f*x])^n*Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ 
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (Intege 
rsQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(554\) vs. \(2(164)=328\).

Time = 4.53 (sec) , antiderivative size = 555, normalized size of antiderivative = 3.07

method result size
default \(-\frac {-2 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (65 \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+4 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (65 \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (65 \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+588 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-1634 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+1488 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-439 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{60 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(555\)

Input:

int(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x,method=_RETURNVERBOSE)
 

Output:

-1/60*(-2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(- 
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(65*EllipticF(cos(1/2*d 
*x+1/2*c),2^(1/2))-147*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+ 
1/2*c)*sin(1/2*d*x+1/2*c)^4+4*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d* 
x+1/2*c)^2)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(65 
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*EllipticE(cos(1/2*d*x+1/2*c),2^ 
(1/2)))*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2*(2*sin(1/2*d*x+1/2*c)^2- 
1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x 
+1/2*c)^2)^(1/2)*(65*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*EllipticE(c 
os(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/2*c)+588*(-2*sin(1/2*d*x+1/2*c)^ 
4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^8-1634*(-2*sin(1/2*d*x+1/ 
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^6+1488*(-2*sin(1/2*d 
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-439*(-2*sin(1 
/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2)/a^3/cos( 
1/2*d*x+1/2*c)^5/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin( 
1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 394, normalized size of antiderivative = 2.18 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\frac {2 \, {\left (147 \, \cos \left (d x + c\right )^{3} + 376 \, \cos \left (d x + c\right )^{2} + 295 \, \cos \left (d x + c\right ) + 60\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 65 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{4} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 65 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{4} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 147 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{4} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 147 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{4} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{60 \, {\left (a^{3} d \cos \left (d x + c\right )^{4} + 3 \, a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + a^{3} d \cos \left (d x + c\right )\right )}} \] Input:

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x, algorithm="fricas")
 

Output:

1/60*(2*(147*cos(d*x + c)^3 + 376*cos(d*x + c)^2 + 295*cos(d*x + c) + 60)* 
sqrt(cos(d*x + c))*sin(d*x + c) - 65*(-I*sqrt(2)*cos(d*x + c)^4 - 3*I*sqrt 
(2)*cos(d*x + c)^3 - 3*I*sqrt(2)*cos(d*x + c)^2 - I*sqrt(2)*cos(d*x + c))* 
weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 65*(I*sqrt(2)* 
cos(d*x + c)^4 + 3*I*sqrt(2)*cos(d*x + c)^3 + 3*I*sqrt(2)*cos(d*x + c)^2 + 
 I*sqrt(2)*cos(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d 
*x + c)) - 147*(I*sqrt(2)*cos(d*x + c)^4 + 3*I*sqrt(2)*cos(d*x + c)^3 + 3* 
I*sqrt(2)*cos(d*x + c)^2 + I*sqrt(2)*cos(d*x + c))*weierstrassZeta(-4, 0, 
weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 147*(-I*sqrt( 
2)*cos(d*x + c)^4 - 3*I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(2)*cos(d*x + c)^ 
2 - I*sqrt(2)*cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 
 0, cos(d*x + c) - I*sin(d*x + c))))/(a^3*d*cos(d*x + c)^4 + 3*a^3*d*cos(d 
*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + a^3*d*cos(d*x + c))
 

Sympy [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\frac {\int \frac {1}{\cos ^{\frac {9}{2}}{\left (c + d x \right )} + 3 \cos ^{\frac {7}{2}}{\left (c + d x \right )} + 3 \cos ^{\frac {5}{2}}{\left (c + d x \right )} + \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx}{a^{3}} \] Input:

integrate(1/cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**3,x)
 

Output:

Integral(1/(cos(c + d*x)**(9/2) + 3*cos(c + d*x)**(7/2) + 3*cos(c + d*x)** 
(5/2) + cos(c + d*x)**(3/2)), x)/a**3
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x, algorithm="maxima")
 

Output:

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x, algorithm="giac")
 

Output:

integrate(1/((a*cos(d*x + c) + a)^3*cos(d*x + c)^(3/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3} \,d x \] Input:

int(1/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^3),x)
 

Output:

int(1/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^3), x)
 

Reduce [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\frac {\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5}+3 \cos \left (d x +c \right )^{4}+3 \cos \left (d x +c \right )^{3}+\cos \left (d x +c \right )^{2}}d x}{a^{3}} \] Input:

int(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)**5 + 3*cos(c + d*x)**4 + 3*cos(c + d* 
x)**3 + cos(c + d*x)**2),x)/a**3