\(\int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx\) [197]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F(-1)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 207 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\frac {119 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac {11 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{2 a^3 d}+\frac {11 \sin (c+d x)}{2 a^3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {119 \sin (c+d x)}{10 a^3 d \sqrt {\cos (c+d x)}}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3}-\frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2}-\frac {119 \sin (c+d x)}{30 d \cos ^{\frac {3}{2}}(c+d x) \left (a^3+a^3 \cos (c+d x)\right )} \] Output:

119/10*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d+11/2*InverseJacobiAM(1/ 
2*d*x+1/2*c,2^(1/2))/a^3/d+11/2*sin(d*x+c)/a^3/d/cos(d*x+c)^(3/2)-119/10*s 
in(d*x+c)/a^3/d/cos(d*x+c)^(1/2)-1/5*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*co 
s(d*x+c))^3-2/3*sin(d*x+c)/a/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2-119/30* 
sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a^3+a^3*cos(d*x+c))
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.02 (sec) , antiderivative size = 394, normalized size of antiderivative = 1.90 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\frac {\cos ^6\left (\frac {1}{2} (c+d x)\right ) \left (\frac {4 i \sqrt {2} e^{-i (c+d x)} \left (119 \left (1+e^{2 i (c+d x)}\right )+119 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )-55 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{d \left (-1+e^{2 i c}\right ) \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}-\frac {\left (5134 \cos \left (\frac {1}{2} (c-d x)\right )+4148 \cos \left (\frac {1}{2} (3 c+d x)\right )+4664 \cos \left (\frac {1}{2} (c+3 d x)\right )+2476 \cos \left (\frac {1}{2} (5 c+3 d x)\right )+3340 \cos \left (\frac {1}{2} (3 c+5 d x)\right )+944 \cos \left (\frac {1}{2} (7 c+5 d x)\right )+1620 \cos \left (\frac {1}{2} (5 c+7 d x)\right )+165 \cos \left (\frac {1}{2} (9 c+7 d x)\right )+357 \cos \left (\frac {1}{2} (7 c+9 d x)\right )\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec ^5\left (\frac {1}{2} (c+d x)\right )}{96 d \cos ^{\frac {3}{2}}(c+d x)}\right )}{5 a^3 (1+\cos (c+d x))^3} \] Input:

Integrate[1/(Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])^3),x]
 

Output:

(Cos[(c + d*x)/2]^6*(((4*I)*Sqrt[2]*(119*(1 + E^((2*I)*(c + d*x))) + 119*( 
-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/ 
2, 3/4, -E^((2*I)*(c + d*x))] - 55*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt 
[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + 
d*x))]))/(d*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x 
)))/E^(I*(c + d*x))]) - ((5134*Cos[(c - d*x)/2] + 4148*Cos[(3*c + d*x)/2] 
+ 4664*Cos[(c + 3*d*x)/2] + 2476*Cos[(5*c + 3*d*x)/2] + 3340*Cos[(3*c + 5* 
d*x)/2] + 944*Cos[(7*c + 5*d*x)/2] + 1620*Cos[(5*c + 7*d*x)/2] + 165*Cos[( 
9*c + 7*d*x)/2] + 357*Cos[(7*c + 9*d*x)/2])*Csc[c/2]*Sec[c/2]*Sec[(c + d*x 
)/2]^5)/(96*d*Cos[c + d*x]^(3/2))))/(5*a^3*(1 + Cos[c + d*x])^3)
 

Rubi [A] (verified)

Time = 1.12 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.07, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.652, Rules used = {3042, 3245, 27, 3042, 3457, 3042, 3457, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3245

\(\displaystyle \frac {\int \frac {13 a-7 a \cos (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)^2}dx}{5 a^2}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {13 a-7 a \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)^2}dx}{10 a^2}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {13 a-7 a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{10 a^2}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int \frac {69 a^2-50 a^2 \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {20 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {69 a^2-50 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}-\frac {20 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\frac {\int \frac {3 \left (165 a^3-119 a^3 \cos (c+d x)\right )}{2 \cos ^{\frac {5}{2}}(c+d x)}dx}{a^2}-\frac {119 a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {20 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {3 \int \frac {165 a^3-119 a^3 \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)}dx}{2 a^2}-\frac {119 a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {20 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {3 \int \frac {165 a^3-119 a^3 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx}{2 a^2}-\frac {119 a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {20 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {\frac {3 \left (165 a^3 \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx-119 a^3 \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx\right )}{2 a^2}-\frac {119 a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {20 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {3 \left (165 a^3 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx-119 a^3 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )}{2 a^2}-\frac {119 a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {20 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {\frac {\frac {3 \left (165 a^3 \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-119 a^3 \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\right )}{2 a^2}-\frac {119 a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {20 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {3 \left (165 a^3 \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-119 a^3 \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )}{2 a^2}-\frac {119 a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {20 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {\frac {3 \left (165 a^3 \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-119 a^3 \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )}{2 a^2}-\frac {119 a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {20 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {3 \left (165 a^3 \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-119 a^3 \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )}{2 a^2}-\frac {119 a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {20 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

Input:

Int[1/(Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])^3),x]
 

Output:

-1/5*Sin[c + d*x]/(d*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^3) + ((-20*a* 
Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^2) + ((-119*a^2 
*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])) + (3*(165*a^3*( 
(2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*Sin[c + d*x])/(3*d*Cos[c + d*x]^( 
3/2))) - 119*a^3*((-2*EllipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*S 
qrt[Cos[c + d*x]]))))/(2*a^2))/(3*a^2))/(10*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3245
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/( 
a*(2*m + 1)*(b*c - a*d))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + 
f*x])^n*Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ 
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (Intege 
rsQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(452\) vs. \(2(186)=372\).

Time = 5.01 (sec) , antiderivative size = 453, normalized size of antiderivative = 2.19

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{5 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}+\frac {32 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{15 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}+\frac {118 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{5 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {128 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {238 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {48 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{4 a^{3} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(453\)

Input:

int(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^3,x,method=_RETURNVERBOSE)
 

Output:

-1/4*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a^3*(1/5*(- 
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)^5+32 
/15*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c 
)^3+118/5*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x 
+1/2*c)-128/5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/ 
2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2* 
d*x+1/2*c),2^(1/2))+238/5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2 
*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(Ellip 
ticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-4/ 
3*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/ 
(cos(1/2*d*x+1/2*c)^2-1/2)^2+48*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(- 
(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2))/sin(1/2*d*x+1/2*c 
)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.13 (sec) , antiderivative size = 414, normalized size of antiderivative = 2.00 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=-\frac {2 \, {\left (357 \, \cos \left (d x + c\right )^{4} + 906 \, \cos \left (d x + c\right )^{3} + 695 \, \cos \left (d x + c\right )^{2} + 120 \, \cos \left (d x + c\right ) - 20\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 165 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{5} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{4} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{3} + i \, \sqrt {2} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 165 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{5} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{4} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{3} - i \, \sqrt {2} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 357 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{5} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{4} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{3} - i \, \sqrt {2} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 357 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{5} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{4} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{3} + i \, \sqrt {2} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{60 \, {\left (a^{3} d \cos \left (d x + c\right )^{5} + 3 \, a^{3} d \cos \left (d x + c\right )^{4} + 3 \, a^{3} d \cos \left (d x + c\right )^{3} + a^{3} d \cos \left (d x + c\right )^{2}\right )}} \] Input:

integrate(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^3,x, algorithm="fricas")
 

Output:

-1/60*(2*(357*cos(d*x + c)^4 + 906*cos(d*x + c)^3 + 695*cos(d*x + c)^2 + 1 
20*cos(d*x + c) - 20)*sqrt(cos(d*x + c))*sin(d*x + c) + 165*(I*sqrt(2)*cos 
(d*x + c)^5 + 3*I*sqrt(2)*cos(d*x + c)^4 + 3*I*sqrt(2)*cos(d*x + c)^3 + I* 
sqrt(2)*cos(d*x + c)^2)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d* 
x + c)) + 165*(-I*sqrt(2)*cos(d*x + c)^5 - 3*I*sqrt(2)*cos(d*x + c)^4 - 3* 
I*sqrt(2)*cos(d*x + c)^3 - I*sqrt(2)*cos(d*x + c)^2)*weierstrassPInverse(- 
4, 0, cos(d*x + c) - I*sin(d*x + c)) + 357*(-I*sqrt(2)*cos(d*x + c)^5 - 3* 
I*sqrt(2)*cos(d*x + c)^4 - 3*I*sqrt(2)*cos(d*x + c)^3 - I*sqrt(2)*cos(d*x 
+ c)^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I 
*sin(d*x + c))) + 357*(I*sqrt(2)*cos(d*x + c)^5 + 3*I*sqrt(2)*cos(d*x + c) 
^4 + 3*I*sqrt(2)*cos(d*x + c)^3 + I*sqrt(2)*cos(d*x + c)^2)*weierstrassZet 
a(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^3* 
d*cos(d*x + c)^5 + 3*a^3*d*cos(d*x + c)^4 + 3*a^3*d*cos(d*x + c)^3 + a^3*d 
*cos(d*x + c)^2)
 

Sympy [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\frac {\int \frac {1}{\cos ^{\frac {11}{2}}{\left (c + d x \right )} + 3 \cos ^{\frac {9}{2}}{\left (c + d x \right )} + 3 \cos ^{\frac {7}{2}}{\left (c + d x \right )} + \cos ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx}{a^{3}} \] Input:

integrate(1/cos(d*x+c)**(5/2)/(a+a*cos(d*x+c))**3,x)
 

Output:

Integral(1/(cos(c + d*x)**(11/2) + 3*cos(c + d*x)**(9/2) + 3*cos(c + d*x)* 
*(7/2) + cos(c + d*x)**(5/2)), x)/a**3
 

Maxima [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\text {Timed out} \] Input:

integrate(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^3,x, algorithm="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^3,x, algorithm="giac")
 

Output:

integrate(1/((a*cos(d*x + c) + a)^3*cos(d*x + c)^(5/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{5/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3} \,d x \] Input:

int(1/(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^3),x)
 

Output:

int(1/(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^3), x)
 

Reduce [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\frac {\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{6}+3 \cos \left (d x +c \right )^{5}+3 \cos \left (d x +c \right )^{4}+\cos \left (d x +c \right )^{3}}d x}{a^{3}} \] Input:

int(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^3,x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)**6 + 3*cos(c + d*x)**5 + 3*cos(c + d* 
x)**4 + cos(c + d*x)**3),x)/a**3