\(\int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx\) [465]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 118 \[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=-\frac {2 b \left (2 a^2-b^2\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 (a-b)^{3/2} (a+b)^{3/2} d}+\frac {\text {arctanh}(\sin (c+d x))}{a^2 d}+\frac {b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))} \] Output:

-2*b*(2*a^2-b^2)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/a^2/(a 
-b)^(3/2)/(a+b)^(3/2)/d+arctanh(sin(d*x+c))/a^2/d+b^2*sin(d*x+c)/a/(a^2-b^ 
2)/d/(a+b*cos(d*x+c))
 

Mathematica [A] (verified)

Time = 0.65 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.24 \[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {\frac {2 b \left (-2 a^2+b^2\right ) \text {arctanh}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\left (-a^2+b^2\right )^{3/2}}-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {a b^2 \sin (c+d x)}{(a-b) (a+b) (a+b \cos (c+d x))}}{a^2 d} \] Input:

Integrate[Sec[c + d*x]/(a + b*Cos[c + d*x])^2,x]
 

Output:

((2*b*(-2*a^2 + b^2)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]]) 
/(-a^2 + b^2)^(3/2) - Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + Log[Cos[( 
c + d*x)/2] + Sin[(c + d*x)/2]] + (a*b^2*Sin[c + d*x])/((a - b)*(a + b)*(a 
 + b*Cos[c + d*x])))/(a^2*d)
 

Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.21, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.421, Rules used = {3042, 3281, 3042, 3480, 3042, 3138, 218, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3281

\(\displaystyle \frac {\int \frac {\left (a^2-b \cos (c+d x) a-b^2\right ) \sec (c+d x)}{a+b \cos (c+d x)}dx}{a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a^2-b \sin \left (c+d x+\frac {\pi }{2}\right ) a-b^2}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3480

\(\displaystyle \frac {\frac {\left (a^2-b^2\right ) \int \sec (c+d x)dx}{a}-\frac {b \left (2 a^2-b^2\right ) \int \frac {1}{a+b \cos (c+d x)}dx}{a}}{a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (a^2-b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {b \left (2 a^2-b^2\right ) \int \frac {1}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3138

\(\displaystyle \frac {\frac {\left (a^2-b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {2 b \left (2 a^2-b^2\right ) \int \frac {1}{(a-b) \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}d\tan \left (\frac {1}{2} (c+d x)\right )}{a d}}{a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\left (a^2-b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {2 b \left (2 a^2-b^2\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}}{a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {\left (a^2-b^2\right ) \text {arctanh}(\sin (c+d x))}{a d}-\frac {2 b \left (2 a^2-b^2\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}}{a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

Input:

Int[Sec[c + d*x]/(a + b*Cos[c + d*x])^2,x]
 

Output:

((-2*b*(2*a^2 - b^2)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/( 
a*Sqrt[a - b]*Sqrt[a + b]*d) + ((a^2 - b^2)*ArcTanh[Sin[c + d*x]])/(a*d))/ 
(a*(a^2 - b^2)) + (b^2*Sin[c + d*x])/(a*(a^2 - b^2)*d*(a + b*Cos[c + d*x]) 
)
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 3281
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2 
))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n 
 + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n + 3)*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2* 
n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))
 

rule 3480
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A*b 
- a*B)/(b*c - a*d)   Int[1/(a + b*Sin[e + f*x]), x], x] + Simp[(B*c - A*d)/ 
(b*c - a*d)   Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 1.31 (sec) , antiderivative size = 164, normalized size of antiderivative = 1.39

method result size
derivativedivides \(\frac {-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{2}}-\frac {2 b \left (-\frac {a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )}+\frac {\left (2 a^{2}-b^{2}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{2}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{2}}}{d}\) \(164\)
default \(\frac {-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{2}}-\frac {2 b \left (-\frac {a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )}+\frac {\left (2 a^{2}-b^{2}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{2}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{2}}}{d}\) \(164\)
risch \(-\frac {2 i b \left (a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )}{\left (-a^{2}+b^{2}\right ) d a \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+2 a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )}-\frac {2 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+a \sqrt {-a^{2}+b^{2}}}{\sqrt {-a^{2}+b^{2}}\, b}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+a \sqrt {-a^{2}+b^{2}}}{\sqrt {-a^{2}+b^{2}}\, b}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{2}}+\frac {2 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}-\frac {b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{2}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{a^{2} d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{a^{2} d}\) \(437\)

Input:

int(sec(d*x+c)/(a+cos(d*x+c)*b)^2,x,method=_RETURNVERBOSE)
 

Output:

1/d*(-1/a^2*ln(tan(1/2*d*x+1/2*c)-1)-2*b/a^2*(-a*b/(a^2-b^2)*tan(1/2*d*x+1 
/2*c)/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b+a+b)+(2*a^2-b^2)/(a-b 
)/(a+b)/((a-b)*(a+b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a-b)*(a+b))^ 
(1/2)))+1/a^2*ln(tan(1/2*d*x+1/2*c)+1))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 262 vs. \(2 (109) = 218\).

Time = 0.28 (sec) , antiderivative size = 592, normalized size of antiderivative = 5.02 \[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\left [-\frac {{\left (2 \, a^{3} b - a b^{3} + {\left (2 \, a^{2} b^{2} - b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4} + {\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4} + {\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (a^{3} b^{2} - a b^{4}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{6} b - 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} d \cos \left (d x + c\right ) + {\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} d\right )}}, -\frac {2 \, {\left (2 \, a^{3} b - a b^{3} + {\left (2 \, a^{2} b^{2} - b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) - {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4} + {\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4} + {\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (a^{3} b^{2} - a b^{4}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{6} b - 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} d \cos \left (d x + c\right ) + {\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} d\right )}}\right ] \] Input:

integrate(sec(d*x+c)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")
 

Output:

[-1/2*((2*a^3*b - a*b^3 + (2*a^2*b^2 - b^4)*cos(d*x + c))*sqrt(-a^2 + b^2) 
*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-a^2 + b^ 
2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 
2*a*b*cos(d*x + c) + a^2)) - (a^5 - 2*a^3*b^2 + a*b^4 + (a^4*b - 2*a^2*b^3 
 + b^5)*cos(d*x + c))*log(sin(d*x + c) + 1) + (a^5 - 2*a^3*b^2 + a*b^4 + ( 
a^4*b - 2*a^2*b^3 + b^5)*cos(d*x + c))*log(-sin(d*x + c) + 1) - 2*(a^3*b^2 
 - a*b^4)*sin(d*x + c))/((a^6*b - 2*a^4*b^3 + a^2*b^5)*d*cos(d*x + c) + (a 
^7 - 2*a^5*b^2 + a^3*b^4)*d), -1/2*(2*(2*a^3*b - a*b^3 + (2*a^2*b^2 - b^4) 
*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^ 
2)*sin(d*x + c))) - (a^5 - 2*a^3*b^2 + a*b^4 + (a^4*b - 2*a^2*b^3 + b^5)*c 
os(d*x + c))*log(sin(d*x + c) + 1) + (a^5 - 2*a^3*b^2 + a*b^4 + (a^4*b - 2 
*a^2*b^3 + b^5)*cos(d*x + c))*log(-sin(d*x + c) + 1) - 2*(a^3*b^2 - a*b^4) 
*sin(d*x + c))/((a^6*b - 2*a^4*b^3 + a^2*b^5)*d*cos(d*x + c) + (a^7 - 2*a^ 
5*b^2 + a^3*b^4)*d)]
 

Sympy [F]

\[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\int \frac {\sec {\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{2}}\, dx \] Input:

integrate(sec(d*x+c)/(a+b*cos(d*x+c))**2,x)
 

Output:

Integral(sec(c + d*x)/(a + b*cos(c + d*x))**2, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(sec(d*x+c)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 

Giac [A] (verification not implemented)

Time = 0.50 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.68 \[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {\frac {2 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a^{3} - a b^{2}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b\right )}} - \frac {2 \, {\left (2 \, a^{2} b - b^{3}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{4} - a^{2} b^{2}\right )} \sqrt {a^{2} - b^{2}}} + \frac {\log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{2}} - \frac {\log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{2}}}{d} \] Input:

integrate(sec(d*x+c)/(a+b*cos(d*x+c))^2,x, algorithm="giac")
 

Output:

(2*b^2*tan(1/2*d*x + 1/2*c)/((a^3 - a*b^2)*(a*tan(1/2*d*x + 1/2*c)^2 - b*t 
an(1/2*d*x + 1/2*c)^2 + a + b)) - 2*(2*a^2*b - b^3)*(pi*floor(1/2*(d*x + c 
)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d* 
x + 1/2*c))/sqrt(a^2 - b^2)))/((a^4 - a^2*b^2)*sqrt(a^2 - b^2)) + log(abs( 
tan(1/2*d*x + 1/2*c) + 1))/a^2 - log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^2)/d
 

Mupad [B] (verification not implemented)

Time = 48.08 (sec) , antiderivative size = 2886, normalized size of antiderivative = 24.46 \[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Too large to display} \] Input:

int(1/(cos(c + d*x)*(a + b*cos(c + d*x))^2),x)
 

Output:

- (atan((((((32*(2*a^8*b - a^9 + a^4*b^5 - 3*a^6*b^3 + a^7*b^2))/(a^5*b + 
a^6 - a^3*b^3 - a^4*b^2) - (32*tan(c/2 + (d*x)/2)*(2*a^9*b - 2*a^4*b^6 + 2 
*a^5*b^5 + 4*a^6*b^4 - 4*a^7*b^3 - 2*a^8*b^2))/(a^2*(a^4*b + a^5 - a^2*b^3 
 - a^3*b^2)))/a^2 - (32*tan(c/2 + (d*x)/2)*(a^6 - 2*a^5*b - 2*a*b^5 + 2*b^ 
6 - 5*a^2*b^4 + 4*a^3*b^3 + 3*a^4*b^2))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2)) 
*1i)/a^2 - ((((32*(2*a^8*b - a^9 + a^4*b^5 - 3*a^6*b^3 + a^7*b^2))/(a^5*b 
+ a^6 - a^3*b^3 - a^4*b^2) + (32*tan(c/2 + (d*x)/2)*(2*a^9*b - 2*a^4*b^6 + 
 2*a^5*b^5 + 4*a^6*b^4 - 4*a^7*b^3 - 2*a^8*b^2))/(a^2*(a^4*b + a^5 - a^2*b 
^3 - a^3*b^2)))/a^2 + (32*tan(c/2 + (d*x)/2)*(a^6 - 2*a^5*b - 2*a*b^5 + 2* 
b^6 - 5*a^2*b^4 + 4*a^3*b^3 + 3*a^4*b^2))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2 
))*1i)/a^2)/((((32*(2*a^8*b - a^9 + a^4*b^5 - 3*a^6*b^3 + a^7*b^2))/(a^5*b 
 + a^6 - a^3*b^3 - a^4*b^2) - (32*tan(c/2 + (d*x)/2)*(2*a^9*b - 2*a^4*b^6 
+ 2*a^5*b^5 + 4*a^6*b^4 - 4*a^7*b^3 - 2*a^8*b^2))/(a^2*(a^4*b + a^5 - a^2* 
b^3 - a^3*b^2)))/a^2 - (32*tan(c/2 + (d*x)/2)*(a^6 - 2*a^5*b - 2*a*b^5 + 2 
*b^6 - 5*a^2*b^4 + 4*a^3*b^3 + 3*a^4*b^2))/(a^4*b + a^5 - a^2*b^3 - a^3*b^ 
2))/a^2 - (64*(2*a^4*b - a*b^4 + b^5 - 3*a^2*b^3 + 2*a^3*b^2))/(a^5*b + a^ 
6 - a^3*b^3 - a^4*b^2) + (((32*(2*a^8*b - a^9 + a^4*b^5 - 3*a^6*b^3 + a^7* 
b^2))/(a^5*b + a^6 - a^3*b^3 - a^4*b^2) + (32*tan(c/2 + (d*x)/2)*(2*a^9*b 
- 2*a^4*b^6 + 2*a^5*b^5 + 4*a^6*b^4 - 4*a^7*b^3 - 2*a^8*b^2))/(a^2*(a^4*b 
+ a^5 - a^2*b^3 - a^3*b^2)))/a^2 + (32*tan(c/2 + (d*x)/2)*(a^6 - 2*a^5*...
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 568, normalized size of antiderivative = 4.81 \[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx =\text {Too large to display} \] Input:

int(sec(d*x+c)/(a+b*cos(d*x+c))^2,x)
 

Output:

( - 4*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqr 
t(a**2 - b**2))*cos(c + d*x)*a**2*b**2 + 2*sqrt(a**2 - b**2)*atan((tan((c 
+ d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 - b**2))*cos(c + d*x)*b**4 - 4 
*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a** 
2 - b**2))*a**3*b + 2*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c 
+ d*x)/2)*b)/sqrt(a**2 - b**2))*a*b**3 - cos(c + d*x)*log(tan((c + d*x)/2) 
 - 1)*a**4*b + 2*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*a**2*b**3 - cos(c 
+ d*x)*log(tan((c + d*x)/2) - 1)*b**5 + cos(c + d*x)*log(tan((c + d*x)/2) 
+ 1)*a**4*b - 2*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a**2*b**3 + cos(c + 
 d*x)*log(tan((c + d*x)/2) + 1)*b**5 - log(tan((c + d*x)/2) - 1)*a**5 + 2* 
log(tan((c + d*x)/2) - 1)*a**3*b**2 - log(tan((c + d*x)/2) - 1)*a*b**4 + l 
og(tan((c + d*x)/2) + 1)*a**5 - 2*log(tan((c + d*x)/2) + 1)*a**3*b**2 + lo 
g(tan((c + d*x)/2) + 1)*a*b**4 + sin(c + d*x)*a**3*b**2 - sin(c + d*x)*a*b 
**4)/(a**2*d*(cos(c + d*x)*a**4*b - 2*cos(c + d*x)*a**2*b**3 + cos(c + d*x 
)*b**5 + a**5 - 2*a**3*b**2 + a*b**4))