\(\int \frac {\sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx\) [466]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 155 \[ \int \frac {\sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {2 b^2 \left (3 a^2-2 b^2\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^3 (a-b)^{3/2} (a+b)^{3/2} d}-\frac {2 b \text {arctanh}(\sin (c+d x))}{a^3 d}+\frac {\left (a^2-2 b^2\right ) \tan (c+d x)}{a^2 \left (a^2-b^2\right ) d}+\frac {b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))} \] Output:

2*b^2*(3*a^2-2*b^2)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/a^3 
/(a-b)^(3/2)/(a+b)^(3/2)/d-2*b*arctanh(sin(d*x+c))/a^3/d+(a^2-2*b^2)*tan(d 
*x+c)/a^2/(a^2-b^2)/d+b^2*tan(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))
 

Mathematica [A] (verified)

Time = 1.36 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.05 \[ \int \frac {\sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {-\frac {2 b^2 \left (-3 a^2+2 b^2\right ) \text {arctanh}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\left (-a^2+b^2\right )^{3/2}}+2 b \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-2 b \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )-\frac {a b^3 \sin (c+d x)}{(a-b) (a+b) (a+b \cos (c+d x))}+a \tan (c+d x)}{a^3 d} \] Input:

Integrate[Sec[c + d*x]^2/(a + b*Cos[c + d*x])^2,x]
 

Output:

((-2*b^2*(-3*a^2 + 2*b^2)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b 
^2]])/(-a^2 + b^2)^(3/2) + 2*b*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - 
2*b*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] - (a*b^3*Sin[c + d*x])/((a - 
b)*(a + b)*(a + b*Cos[c + d*x])) + a*Tan[c + d*x])/(a^3*d)
 

Rubi [A] (verified)

Time = 0.96 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.13, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.524, Rules used = {3042, 3281, 3042, 3534, 25, 3042, 3480, 3042, 3138, 218, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3281

\(\displaystyle \frac {\int \frac {\left (a^2-b \cos (c+d x) a-2 b^2+b^2 \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{a+b \cos (c+d x)}dx}{a \left (a^2-b^2\right )}+\frac {b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a^2-b \sin \left (c+d x+\frac {\pi }{2}\right ) a-2 b^2+b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a \left (a^2-b^2\right )}+\frac {b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {\frac {\int -\frac {\left (2 b \left (a^2-b^2\right )-a b^2 \cos (c+d x)\right ) \sec (c+d x)}{a+b \cos (c+d x)}dx}{a}+\frac {\left (a^2-2 b^2\right ) \tan (c+d x)}{a d}}{a \left (a^2-b^2\right )}+\frac {b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\left (a^2-2 b^2\right ) \tan (c+d x)}{a d}-\frac {\int \frac {\left (2 b \left (a^2-b^2\right )-a b^2 \cos (c+d x)\right ) \sec (c+d x)}{a+b \cos (c+d x)}dx}{a}}{a \left (a^2-b^2\right )}+\frac {b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (a^2-2 b^2\right ) \tan (c+d x)}{a d}-\frac {\int \frac {2 b \left (a^2-b^2\right )-a b^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}}{a \left (a^2-b^2\right )}+\frac {b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3480

\(\displaystyle \frac {\frac {\left (a^2-2 b^2\right ) \tan (c+d x)}{a d}-\frac {\frac {2 b \left (a^2-b^2\right ) \int \sec (c+d x)dx}{a}-\frac {b^2 \left (3 a^2-2 b^2\right ) \int \frac {1}{a+b \cos (c+d x)}dx}{a}}{a}}{a \left (a^2-b^2\right )}+\frac {b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (a^2-2 b^2\right ) \tan (c+d x)}{a d}-\frac {\frac {2 b \left (a^2-b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {b^2 \left (3 a^2-2 b^2\right ) \int \frac {1}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{a}}{a \left (a^2-b^2\right )}+\frac {b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3138

\(\displaystyle \frac {\frac {\left (a^2-2 b^2\right ) \tan (c+d x)}{a d}-\frac {\frac {2 b \left (a^2-b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {2 b^2 \left (3 a^2-2 b^2\right ) \int \frac {1}{(a-b) \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}d\tan \left (\frac {1}{2} (c+d x)\right )}{a d}}{a}}{a \left (a^2-b^2\right )}+\frac {b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\left (a^2-2 b^2\right ) \tan (c+d x)}{a d}-\frac {\frac {2 b \left (a^2-b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {2 b^2 \left (3 a^2-2 b^2\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}}{a}}{a \left (a^2-b^2\right )}+\frac {b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {\left (a^2-2 b^2\right ) \tan (c+d x)}{a d}-\frac {\frac {2 b \left (a^2-b^2\right ) \text {arctanh}(\sin (c+d x))}{a d}-\frac {2 b^2 \left (3 a^2-2 b^2\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}}{a}}{a \left (a^2-b^2\right )}+\frac {b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

Input:

Int[Sec[c + d*x]^2/(a + b*Cos[c + d*x])^2,x]
 

Output:

(b^2*Tan[c + d*x])/(a*(a^2 - b^2)*d*(a + b*Cos[c + d*x])) + (-(((-2*b^2*(3 
*a^2 - 2*b^2)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a*Sqrt[ 
a - b]*Sqrt[a + b]*d) + (2*b*(a^2 - b^2)*ArcTanh[Sin[c + d*x]])/(a*d))/a) 
+ ((a^2 - 2*b^2)*Tan[c + d*x])/(a*d))/(a*(a^2 - b^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 3281
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2 
))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n 
 + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n + 3)*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2* 
n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))
 

rule 3480
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A*b 
- a*B)/(b*c - a*d)   Int[1/(a + b*Sin[e + f*x]), x], x] + Simp[(B*c - A*d)/ 
(b*c - a*d)   Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 1.55 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.32

method result size
derivativedivides \(\frac {\frac {2 b^{2} \left (-\frac {a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )}+\frac {\left (3 a^{2}-2 b^{2}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{3}}+\frac {2 b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{3}}-\frac {1}{a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {1}{a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {2 b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{3}}}{d}\) \(205\)
default \(\frac {\frac {2 b^{2} \left (-\frac {a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )}+\frac {\left (3 a^{2}-2 b^{2}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{3}}+\frac {2 b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{3}}-\frac {1}{a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {1}{a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {2 b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{3}}}{d}\) \(205\)
risch \(\frac {2 i \left (-b^{2} a \,{\mathrm e}^{3 i \left (d x +c \right )}+a^{2} b \,{\mathrm e}^{2 i \left (d x +c \right )}-2 b^{3} {\mathrm e}^{2 i \left (d x +c \right )}+2 a^{3} {\mathrm e}^{i \left (d x +c \right )}-3 b^{2} a \,{\mathrm e}^{i \left (d x +c \right )}+a^{2} b -2 b^{3}\right )}{\left (a^{2}-b^{2}\right ) d \,a^{2} \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+2 a \,{\mathrm e}^{i \left (d x +c \right )}+b \right ) \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}-\frac {2 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{a^{3} d}+\frac {2 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{a^{3} d}-\frac {3 b^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d a}+\frac {2 b^{4} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{3}}+\frac {3 b^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d a}-\frac {2 b^{4} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{3}}\) \(537\)

Input:

int(sec(d*x+c)^2/(a+cos(d*x+c)*b)^2,x,method=_RETURNVERBOSE)
 

Output:

1/d*(2*b^2/a^3*(-a*b/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c)^2*a- 
tan(1/2*d*x+1/2*c)^2*b+a+b)+(3*a^2-2*b^2)/(a-b)/(a+b)/((a-b)*(a+b))^(1/2)* 
arctan((a-b)*tan(1/2*d*x+1/2*c)/((a-b)*(a+b))^(1/2)))+2*b/a^3*ln(tan(1/2*d 
*x+1/2*c)-1)-1/a^2/(tan(1/2*d*x+1/2*c)-1)-1/a^2/(tan(1/2*d*x+1/2*c)+1)-2*b 
/a^3*ln(tan(1/2*d*x+1/2*c)+1))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 339 vs. \(2 (146) = 292\).

Time = 0.28 (sec) , antiderivative size = 750, normalized size of antiderivative = 4.84 \[ \int \frac {\sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx =\text {Too large to display} \] Input:

integrate(sec(d*x+c)^2/(a+b*cos(d*x+c))^2,x, algorithm="fricas")
 

Output:

[-1/2*(((3*a^2*b^3 - 2*b^5)*cos(d*x + c)^2 + (3*a^3*b^2 - 2*a*b^4)*cos(d*x 
 + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + 
c)^2 + 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2) 
/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) + 2*((a^4*b^2 - 2*a^2*b^ 
4 + b^6)*cos(d*x + c)^2 + (a^5*b - 2*a^3*b^3 + a*b^5)*cos(d*x + c))*log(si 
n(d*x + c) + 1) - 2*((a^4*b^2 - 2*a^2*b^4 + b^6)*cos(d*x + c)^2 + (a^5*b - 
 2*a^3*b^3 + a*b^5)*cos(d*x + c))*log(-sin(d*x + c) + 1) - 2*(a^6 - 2*a^4* 
b^2 + a^2*b^4 + (a^5*b - 3*a^3*b^3 + 2*a*b^5)*cos(d*x + c))*sin(d*x + c))/ 
((a^7*b - 2*a^5*b^3 + a^3*b^5)*d*cos(d*x + c)^2 + (a^8 - 2*a^6*b^2 + a^4*b 
^4)*d*cos(d*x + c)), (((3*a^2*b^3 - 2*b^5)*cos(d*x + c)^2 + (3*a^3*b^2 - 2 
*a*b^4)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a 
^2 - b^2)*sin(d*x + c))) - ((a^4*b^2 - 2*a^2*b^4 + b^6)*cos(d*x + c)^2 + ( 
a^5*b - 2*a^3*b^3 + a*b^5)*cos(d*x + c))*log(sin(d*x + c) + 1) + ((a^4*b^2 
 - 2*a^2*b^4 + b^6)*cos(d*x + c)^2 + (a^5*b - 2*a^3*b^3 + a*b^5)*cos(d*x + 
 c))*log(-sin(d*x + c) + 1) + (a^6 - 2*a^4*b^2 + a^2*b^4 + (a^5*b - 3*a^3* 
b^3 + 2*a*b^5)*cos(d*x + c))*sin(d*x + c))/((a^7*b - 2*a^5*b^3 + a^3*b^5)* 
d*cos(d*x + c)^2 + (a^8 - 2*a^6*b^2 + a^4*b^4)*d*cos(d*x + c))]
 

Sympy [F]

\[ \int \frac {\sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\int \frac {\sec ^{2}{\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{2}}\, dx \] Input:

integrate(sec(d*x+c)**2/(a+b*cos(d*x+c))**2,x)
 

Output:

Integral(sec(c + d*x)**2/(a + b*cos(c + d*x))**2, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(sec(d*x+c)^2/(a+b*cos(d*x+c))^2,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 332 vs. \(2 (146) = 292\).

Time = 0.57 (sec) , antiderivative size = 332, normalized size of antiderivative = 2.14 \[ \int \frac {\sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=-\frac {2 \, {\left (\frac {{\left (3 \, a^{2} b^{2} - 2 \, b^{4}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{5} - a^{3} b^{2}\right )} \sqrt {a^{2} - b^{2}}} + \frac {a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 2 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a - b\right )} {\left (a^{4} - a^{2} b^{2}\right )}} + \frac {b \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} - \frac {b \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}}\right )}}{d} \] Input:

integrate(sec(d*x+c)^2/(a+b*cos(d*x+c))^2,x, algorithm="giac")
 

Output:

-2*((3*a^2*b^2 - 2*b^4)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) 
+ arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2 
)))/((a^5 - a^3*b^2)*sqrt(a^2 - b^2)) + (a^3*tan(1/2*d*x + 1/2*c)^3 - a^2* 
b*tan(1/2*d*x + 1/2*c)^3 - a*b^2*tan(1/2*d*x + 1/2*c)^3 + 2*b^3*tan(1/2*d* 
x + 1/2*c)^3 + a^3*tan(1/2*d*x + 1/2*c) + a^2*b*tan(1/2*d*x + 1/2*c) - a*b 
^2*tan(1/2*d*x + 1/2*c) - 2*b^3*tan(1/2*d*x + 1/2*c))/((a*tan(1/2*d*x + 1/ 
2*c)^4 - b*tan(1/2*d*x + 1/2*c)^4 + 2*b*tan(1/2*d*x + 1/2*c)^2 - a - b)*(a 
^4 - a^2*b^2)) + b*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 - b*log(abs(tan( 
1/2*d*x + 1/2*c) - 1))/a^3)/d
 

Mupad [B] (verification not implemented)

Time = 47.56 (sec) , antiderivative size = 3176, normalized size of antiderivative = 20.49 \[ \int \frac {\sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Too large to display} \] Input:

int(1/(cos(c + d*x)^2*(a + b*cos(c + d*x))^2),x)
 

Output:

(b*atan(((b*((32*tan(c/2 + (d*x)/2)*(8*b^8 - 8*a*b^7 - 16*a^2*b^6 + 16*a^3 
*b^5 + 5*a^4*b^4 - 8*a^5*b^3 + 4*a^6*b^2))/(a^6*b + a^7 - a^4*b^3 - a^5*b^ 
2) - (2*b*((32*(2*a^11*b - 2*a^6*b^6 + a^7*b^5 + 5*a^8*b^4 - 3*a^9*b^3 - 3 
*a^10*b^2))/(a^8*b + a^9 - a^6*b^3 - a^7*b^2) - (64*b*tan(c/2 + (d*x)/2)*( 
2*a^11*b - 2*a^6*b^6 + 2*a^7*b^5 + 4*a^8*b^4 - 4*a^9*b^3 - 2*a^10*b^2))/(a 
^3*(a^6*b + a^7 - a^4*b^3 - a^5*b^2))))/a^3)*2i)/a^3 + (b*((32*tan(c/2 + ( 
d*x)/2)*(8*b^8 - 8*a*b^7 - 16*a^2*b^6 + 16*a^3*b^5 + 5*a^4*b^4 - 8*a^5*b^3 
 + 4*a^6*b^2))/(a^6*b + a^7 - a^4*b^3 - a^5*b^2) + (2*b*((32*(2*a^11*b - 2 
*a^6*b^6 + a^7*b^5 + 5*a^8*b^4 - 3*a^9*b^3 - 3*a^10*b^2))/(a^8*b + a^9 - a 
^6*b^3 - a^7*b^2) + (64*b*tan(c/2 + (d*x)/2)*(2*a^11*b - 2*a^6*b^6 + 2*a^7 
*b^5 + 4*a^8*b^4 - 4*a^9*b^3 - 2*a^10*b^2))/(a^3*(a^6*b + a^7 - a^4*b^3 - 
a^5*b^2))))/a^3)*2i)/a^3)/((64*(8*b^8 - 4*a*b^7 - 20*a^2*b^6 + 6*a^3*b^5 + 
 12*a^4*b^4))/(a^8*b + a^9 - a^6*b^3 - a^7*b^2) - (2*b*((32*tan(c/2 + (d*x 
)/2)*(8*b^8 - 8*a*b^7 - 16*a^2*b^6 + 16*a^3*b^5 + 5*a^4*b^4 - 8*a^5*b^3 + 
4*a^6*b^2))/(a^6*b + a^7 - a^4*b^3 - a^5*b^2) - (2*b*((32*(2*a^11*b - 2*a^ 
6*b^6 + a^7*b^5 + 5*a^8*b^4 - 3*a^9*b^3 - 3*a^10*b^2))/(a^8*b + a^9 - a^6* 
b^3 - a^7*b^2) - (64*b*tan(c/2 + (d*x)/2)*(2*a^11*b - 2*a^6*b^6 + 2*a^7*b^ 
5 + 4*a^8*b^4 - 4*a^9*b^3 - 2*a^10*b^2))/(a^3*(a^6*b + a^7 - a^4*b^3 - a^5 
*b^2))))/a^3))/a^3 + (2*b*((32*tan(c/2 + (d*x)/2)*(8*b^8 - 8*a*b^7 - 16*a^ 
2*b^6 + 16*a^3*b^5 + 5*a^4*b^4 - 8*a^5*b^3 + 4*a^6*b^2))/(a^6*b + a^7 -...
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 977, normalized size of antiderivative = 6.30 \[ \int \frac {\sec ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx =\text {Too large to display} \] Input:

int(sec(d*x+c)^2/(a+b*cos(d*x+c))^2,x)
 

Output:

(6*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a 
**2 - b**2))*cos(c + d*x)*a**3*b**2 - 4*sqrt(a**2 - b**2)*atan((tan((c + d 
*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 - b**2))*cos(c + d*x)*a*b**4 - 6* 
sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 
 - b**2))*sin(c + d*x)**2*a**2*b**3 + 4*sqrt(a**2 - b**2)*atan((tan((c + d 
*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 - b**2))*sin(c + d*x)**2*b**5 + 6 
*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a** 
2 - b**2))*a**2*b**3 - 4*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan( 
(c + d*x)/2)*b)/sqrt(a**2 - b**2))*b**5 + 2*cos(c + d*x)*log(tan((c + d*x) 
/2) - 1)*a**5*b - 4*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*a**3*b**3 + 2*c 
os(c + d*x)*log(tan((c + d*x)/2) - 1)*a*b**5 - 2*cos(c + d*x)*log(tan((c + 
 d*x)/2) + 1)*a**5*b + 4*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a**3*b**3 
- 2*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a*b**5 + cos(c + d*x)*sin(c + d 
*x)*a**5*b - 3*cos(c + d*x)*sin(c + d*x)*a**3*b**3 + 2*cos(c + d*x)*sin(c 
+ d*x)*a*b**5 - 2*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a**4*b**2 + 4* 
log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a**2*b**4 - 2*log(tan((c + d*x)/ 
2) - 1)*sin(c + d*x)**2*b**6 + 2*log(tan((c + d*x)/2) - 1)*a**4*b**2 - 4*l 
og(tan((c + d*x)/2) - 1)*a**2*b**4 + 2*log(tan((c + d*x)/2) - 1)*b**6 + 2* 
log(tan((c + d*x)/2) + 1)*sin(c + d*x)**2*a**4*b**2 - 4*log(tan((c + d*x)/ 
2) + 1)*sin(c + d*x)**2*a**2*b**4 + 2*log(tan((c + d*x)/2) + 1)*sin(c +...