\(\int \frac {\sec ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx\) [560]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 140 \[ \int \frac {\sec ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx=-\frac {\sqrt {7} E\left (\frac {1}{2} (c+\pi +d x)|\frac {8}{7}\right )}{3 d}+\frac {\operatorname {EllipticF}\left (\frac {1}{2} (c+\pi +d x),\frac {8}{7}\right )}{3 \sqrt {7} d}-\frac {\sqrt {7} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+\pi +d x),\frac {8}{7}\right )}{3 d}+\frac {\sqrt {3-4 \cos (c+d x)} \tan (c+d x)}{3 d}+\frac {\sqrt {3-4 \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{6 d} \] Output:

-1/3*EllipticE(cos(1/2*d*x+1/2*c),2/7*14^(1/2))*7^(1/2)/d+1/21*InverseJaco 
biAM(1/2*d*x+1/2*Pi+1/2*c,2/7*14^(1/2))*7^(1/2)/d-1/3*EllipticPi(cos(1/2*d 
*x+1/2*c),2,2/7*14^(1/2))*7^(1/2)/d+1/3*(3-4*cos(d*x+c))^(1/2)*tan(d*x+c)/ 
d+1/6*(3-4*cos(d*x+c))^(1/2)*sec(d*x+c)*tan(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 2.19 (sec) , antiderivative size = 236, normalized size of antiderivative = 1.69 \[ \int \frac {\sec ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx=\frac {-\frac {4 \sqrt {-3+4 \cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),8\right )}{\sqrt {3-4 \cos (c+d x)}}+\frac {18 \sqrt {-3+4 \cos (c+d x)} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),8\right )}{\sqrt {3-4 \cos (c+d x)}}-\frac {2 i \left (21 E\left (i \text {arcsinh}\left (\sqrt {3-4 \cos (c+d x)}\right )|-\frac {1}{7}\right )-12 \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {3-4 \cos (c+d x)}\right ),-\frac {1}{7}\right )-8 \operatorname {EllipticPi}\left (-\frac {1}{3},i \text {arcsinh}\left (\sqrt {3-4 \cos (c+d x)}\right ),-\frac {1}{7}\right )\right ) \sin (c+d x)}{3 \sqrt {7} \sqrt {\sin ^2(c+d x)}}+\sqrt {3-4 \cos (c+d x)} (1+2 \cos (c+d x)) \sec (c+d x) \tan (c+d x)}{6 d} \] Input:

Integrate[Sec[c + d*x]^3/Sqrt[3 - 4*Cos[c + d*x]],x]
 

Output:

((-4*Sqrt[-3 + 4*Cos[c + d*x]]*EllipticF[(c + d*x)/2, 8])/Sqrt[3 - 4*Cos[c 
 + d*x]] + (18*Sqrt[-3 + 4*Cos[c + d*x]]*EllipticPi[2, (c + d*x)/2, 8])/Sq 
rt[3 - 4*Cos[c + d*x]] - (((2*I)/3)*(21*EllipticE[I*ArcSinh[Sqrt[3 - 4*Cos 
[c + d*x]]], -1/7] - 12*EllipticF[I*ArcSinh[Sqrt[3 - 4*Cos[c + d*x]]], -1/ 
7] - 8*EllipticPi[-1/3, I*ArcSinh[Sqrt[3 - 4*Cos[c + d*x]]], -1/7])*Sin[c 
+ d*x])/(Sqrt[7]*Sqrt[Sin[c + d*x]^2]) + Sqrt[3 - 4*Cos[c + d*x]]*(1 + 2*C 
os[c + d*x])*Sec[c + d*x]*Tan[c + d*x])/(6*d)
 

Rubi [A] (verified)

Time = 1.00 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.98, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.609, Rules used = {3042, 3281, 3042, 3534, 27, 3042, 3538, 27, 3042, 3133, 3481, 3042, 3141, 3285}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {3-4 \sin \left (c+d x+\frac {\pi }{2}\right )} \sin \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 3281

\(\displaystyle \frac {1}{6} \int \frac {\left (-2 \cos ^2(c+d x)+3 \cos (c+d x)+6\right ) \sec ^2(c+d x)}{\sqrt {3-4 \cos (c+d x)}}dx+\frac {\sqrt {3-4 \cos (c+d x)} \tan (c+d x) \sec (c+d x)}{6 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} \int \frac {-2 \sin \left (c+d x+\frac {\pi }{2}\right )^2+3 \sin \left (c+d x+\frac {\pi }{2}\right )+6}{\sqrt {3-4 \sin \left (c+d x+\frac {\pi }{2}\right )} \sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {\sqrt {3-4 \cos (c+d x)} \tan (c+d x) \sec (c+d x)}{6 d}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {1}{6} \left (\frac {1}{3} \int \frac {3 \left (4 \cos ^2(c+d x)-2 \cos (c+d x)+7\right ) \sec (c+d x)}{\sqrt {3-4 \cos (c+d x)}}dx+\frac {2 \sqrt {3-4 \cos (c+d x)} \tan (c+d x)}{d}\right )+\frac {\sqrt {3-4 \cos (c+d x)} \tan (c+d x) \sec (c+d x)}{6 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{6} \left (\int \frac {\left (4 \cos ^2(c+d x)-2 \cos (c+d x)+7\right ) \sec (c+d x)}{\sqrt {3-4 \cos (c+d x)}}dx+\frac {2 \sqrt {3-4 \cos (c+d x)} \tan (c+d x)}{d}\right )+\frac {\sqrt {3-4 \cos (c+d x)} \tan (c+d x) \sec (c+d x)}{6 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} \left (\int \frac {4 \sin \left (c+d x+\frac {\pi }{2}\right )^2-2 \sin \left (c+d x+\frac {\pi }{2}\right )+7}{\sqrt {3-4 \sin \left (c+d x+\frac {\pi }{2}\right )} \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sqrt {3-4 \cos (c+d x)} \tan (c+d x)}{d}\right )+\frac {\sqrt {3-4 \cos (c+d x)} \tan (c+d x) \sec (c+d x)}{6 d}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {1}{6} \left (-\int \sqrt {3-4 \cos (c+d x)}dx+\frac {1}{4} \int \frac {4 (\cos (c+d x)+7) \sec (c+d x)}{\sqrt {3-4 \cos (c+d x)}}dx+\frac {2 \sqrt {3-4 \cos (c+d x)} \tan (c+d x)}{d}\right )+\frac {\sqrt {3-4 \cos (c+d x)} \tan (c+d x) \sec (c+d x)}{6 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{6} \left (-\int \sqrt {3-4 \cos (c+d x)}dx+\int \frac {(\cos (c+d x)+7) \sec (c+d x)}{\sqrt {3-4 \cos (c+d x)}}dx+\frac {2 \sqrt {3-4 \cos (c+d x)} \tan (c+d x)}{d}\right )+\frac {\sqrt {3-4 \cos (c+d x)} \tan (c+d x) \sec (c+d x)}{6 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} \left (-\int \sqrt {3-4 \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+7}{\sqrt {3-4 \sin \left (c+d x+\frac {\pi }{2}\right )} \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sqrt {3-4 \cos (c+d x)} \tan (c+d x)}{d}\right )+\frac {\sqrt {3-4 \cos (c+d x)} \tan (c+d x) \sec (c+d x)}{6 d}\)

\(\Big \downarrow \) 3133

\(\displaystyle \frac {1}{6} \left (\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+7}{\sqrt {3-4 \sin \left (c+d x+\frac {\pi }{2}\right )} \sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {2 \sqrt {7} E\left (\frac {1}{2} (c+d x+\pi )|\frac {8}{7}\right )}{d}+\frac {2 \sqrt {3-4 \cos (c+d x)} \tan (c+d x)}{d}\right )+\frac {\sqrt {3-4 \cos (c+d x)} \tan (c+d x) \sec (c+d x)}{6 d}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {1}{6} \left (\int \frac {1}{\sqrt {3-4 \cos (c+d x)}}dx+7 \int \frac {\sec (c+d x)}{\sqrt {3-4 \cos (c+d x)}}dx-\frac {2 \sqrt {7} E\left (\frac {1}{2} (c+d x+\pi )|\frac {8}{7}\right )}{d}+\frac {2 \sqrt {3-4 \cos (c+d x)} \tan (c+d x)}{d}\right )+\frac {\sqrt {3-4 \cos (c+d x)} \tan (c+d x) \sec (c+d x)}{6 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} \left (\int \frac {1}{\sqrt {3-4 \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+7 \int \frac {1}{\sqrt {3-4 \sin \left (c+d x+\frac {\pi }{2}\right )} \sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {2 \sqrt {7} E\left (\frac {1}{2} (c+d x+\pi )|\frac {8}{7}\right )}{d}+\frac {2 \sqrt {3-4 \cos (c+d x)} \tan (c+d x)}{d}\right )+\frac {\sqrt {3-4 \cos (c+d x)} \tan (c+d x) \sec (c+d x)}{6 d}\)

\(\Big \downarrow \) 3141

\(\displaystyle \frac {1}{6} \left (7 \int \frac {1}{\sqrt {3-4 \sin \left (c+d x+\frac {\pi }{2}\right )} \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x+\pi ),\frac {8}{7}\right )}{\sqrt {7} d}-\frac {2 \sqrt {7} E\left (\frac {1}{2} (c+d x+\pi )|\frac {8}{7}\right )}{d}+\frac {2 \sqrt {3-4 \cos (c+d x)} \tan (c+d x)}{d}\right )+\frac {\sqrt {3-4 \cos (c+d x)} \tan (c+d x) \sec (c+d x)}{6 d}\)

\(\Big \downarrow \) 3285

\(\displaystyle \frac {\sqrt {3-4 \cos (c+d x)} \tan (c+d x) \sec (c+d x)}{6 d}+\frac {1}{6} \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x+\pi ),\frac {8}{7}\right )}{\sqrt {7} d}-\frac {2 \sqrt {7} E\left (\frac {1}{2} (c+d x+\pi )|\frac {8}{7}\right )}{d}-\frac {2 \sqrt {7} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x+\pi ),\frac {8}{7}\right )}{d}+\frac {2 \sqrt {3-4 \cos (c+d x)} \tan (c+d x)}{d}\right )\)

Input:

Int[Sec[c + d*x]^3/Sqrt[3 - 4*Cos[c + d*x]],x]
 

Output:

(Sqrt[3 - 4*Cos[c + d*x]]*Sec[c + d*x]*Tan[c + d*x])/(6*d) + ((-2*Sqrt[7]* 
EllipticE[(c + Pi + d*x)/2, 8/7])/d + (2*EllipticF[(c + Pi + d*x)/2, 8/7]) 
/(Sqrt[7]*d) - (2*Sqrt[7]*EllipticPi[2, (c + Pi + d*x)/2, 8/7])/d + (2*Sqr 
t[3 - 4*Cos[c + d*x]]*Tan[c + d*x])/d)/6
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3133
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 - b]/d)*EllipticE[(1/2)*(c + Pi/2 + d*x), -2*(b/(a - b))], x] /; FreeQ[{a, 
 b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a - b, 0]
 

rule 3141
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a - b]))*EllipticF[(1/2)*(c + Pi/2 + d*x), -2*(b/(a - b))], x] /; FreeQ 
[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a - b, 0]
 

rule 3281
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2 
))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n 
 + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n + 3)*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2* 
n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))
 

rule 3285
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a - b)*Sqrt[c - d]))*EllipticPi[ 
-2*(b/(a - b)), (1/2)*(e + Pi/2 + f*x), -2*(d/(c - d))], x] /; FreeQ[{a, b, 
 c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2 
, 0] && GtQ[c - d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(407\) vs. \(2(125)=250\).

Time = 1.99 (sec) , antiderivative size = 408, normalized size of antiderivative = 2.91

method result size
default \(-\frac {\sqrt {-\left (8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-7\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{2}}-\frac {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {56 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-7}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 \sqrt {14}}{7}\right )}{21 \sqrt {8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {56 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-7}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 \sqrt {14}}{7}\right )}{3 \sqrt {8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {56 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-7}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2, \frac {2 \sqrt {14}}{7}\right )}{3 \sqrt {8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+7}\, d}\) \(408\)

Input:

int(sec(d*x+c)^3/(3-4*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-(-(8*cos(1/2*d*x+1/2*c)^2-7)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-1/3*cos(1/2*d* 
x+1/2*c)*(8*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d* 
x+1/2*c)^2-1)^2-2/3*cos(1/2*d*x+1/2*c)*(8*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x 
+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)+1/21*(sin(1/2*d*x+1/2*c)^2)^(1 
/2)*(56*sin(1/2*d*x+1/2*c)^2-7)^(1/2)/(8*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2/7*14^(1/2))-1/3*(sin(1/2*d* 
x+1/2*c)^2)^(1/2)*(56*sin(1/2*d*x+1/2*c)^2-7)^(1/2)/(8*sin(1/2*d*x+1/2*c)^ 
4-sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2/7*14^(1/2))-1 
/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(56*sin(1/2*d*x+1/2*c)^2-7)^(1/2)/(8*sin(1 
/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c), 
2,2/7*14^(1/2)))/sin(1/2*d*x+1/2*c)/(-8*cos(1/2*d*x+1/2*c)^2+7)^(1/2)/d
 

Fricas [F]

\[ \int \frac {\sec ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{3}}{\sqrt {-4 \, \cos \left (d x + c\right ) + 3}} \,d x } \] Input:

integrate(sec(d*x+c)^3/(3-4*cos(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

integral(-sqrt(-4*cos(d*x + c) + 3)*sec(d*x + c)^3/(4*cos(d*x + c) - 3), x 
)
 

Sympy [F]

\[ \int \frac {\sec ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx=\int \frac {\sec ^{3}{\left (c + d x \right )}}{\sqrt {3 - 4 \cos {\left (c + d x \right )}}}\, dx \] Input:

integrate(sec(d*x+c)**3/(3-4*cos(d*x+c))**(1/2),x)
 

Output:

Integral(sec(c + d*x)**3/sqrt(3 - 4*cos(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {\sec ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{3}}{\sqrt {-4 \, \cos \left (d x + c\right ) + 3}} \,d x } \] Input:

integrate(sec(d*x+c)^3/(3-4*cos(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate(sec(d*x + c)^3/sqrt(-4*cos(d*x + c) + 3), x)
 

Giac [F]

\[ \int \frac {\sec ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{3}}{\sqrt {-4 \, \cos \left (d x + c\right ) + 3}} \,d x } \] Input:

integrate(sec(d*x+c)^3/(3-4*cos(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

integrate(sec(d*x + c)^3/sqrt(-4*cos(d*x + c) + 3), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^3\,\sqrt {3-4\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int(1/(cos(c + d*x)^3*(3 - 4*cos(c + d*x))^(1/2)),x)
 

Output:

int(1/(cos(c + d*x)^3*(3 - 4*cos(c + d*x))^(1/2)), x)
 

Reduce [F]

\[ \int \frac {\sec ^3(c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx=-\left (\int \frac {\sqrt {-4 \cos \left (d x +c \right )+3}\, \sec \left (d x +c \right )^{3}}{4 \cos \left (d x +c \right )-3}d x \right ) \] Input:

int(sec(d*x+c)^3/(3-4*cos(d*x+c))^(1/2),x)
 

Output:

 - int((sqrt( - 4*cos(c + d*x) + 3)*sec(c + d*x)**3)/(4*cos(c + d*x) - 3), 
x)