\(\int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx\) [561]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 111 \[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=\frac {6 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {10 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {10 B \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 B \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d} \] Output:

6/5*A*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+10/21*B*InverseJacobiAM(1/2* 
d*x+1/2*c,2^(1/2))/d+10/21*B*cos(d*x+c)^(1/2)*sin(d*x+c)/d+2/5*A*cos(d*x+c 
)^(3/2)*sin(d*x+c)/d+2/7*B*cos(d*x+c)^(5/2)*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 0.65 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.69 \[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=\frac {126 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+50 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sqrt {\cos (c+d x)} (65 B+42 A \cos (c+d x)+15 B \cos (2 (c+d x))) \sin (c+d x)}{105 d} \] Input:

Integrate[Cos[c + d*x]^(5/2)*(A + B*Cos[c + d*x]),x]
 

Output:

(126*A*EllipticE[(c + d*x)/2, 2] + 50*B*EllipticF[(c + d*x)/2, 2] + Sqrt[C 
os[c + d*x]]*(65*B + 42*A*Cos[c + d*x] + 15*B*Cos[2*(c + d*x)])*Sin[c + d* 
x])/(105*d)
 

Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.05, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 3227, 3042, 3115, 3042, 3115, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3227

\(\displaystyle A \int \cos ^{\frac {5}{2}}(c+d x)dx+B \int \cos ^{\frac {7}{2}}(c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle A \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx+B \int \sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}dx\)

\(\Big \downarrow \) 3115

\(\displaystyle A \left (\frac {3}{5} \int \sqrt {\cos (c+d x)}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+B \left (\frac {5}{7} \int \cos ^{\frac {3}{2}}(c+d x)dx+\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle A \left (\frac {3}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+B \left (\frac {5}{7} \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx+\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )\)

\(\Big \downarrow \) 3115

\(\displaystyle A \left (\frac {3}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+B \left (\frac {5}{7} \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle A \left (\frac {3}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+B \left (\frac {5}{7} \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle B \left (\frac {5}{7} \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )+A \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle A \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+B \left (\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}+\frac {5}{7} \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )\)

Input:

Int[Cos[c + d*x]^(5/2)*(A + B*Cos[c + d*x]),x]
 

Output:

A*((6*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*Cos[c + d*x]^(3/2)*Sin[c + d*x 
])/(5*d)) + B*((2*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(7*d) + (5*((2*Elliptic 
F[(c + d*x)/2, 2])/(3*d) + (2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d)))/7)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(289\) vs. \(2(98)=196\).

Time = 13.72 (sec) , antiderivative size = 290, normalized size of antiderivative = 2.61

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (240 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+\left (-168 A -360 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (168 A +280 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-42 A -80 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-63 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+25 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{105 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(290\)
parts \(-\frac {2 A \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 B \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (48 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}-120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-72 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(403\)

Input:

int(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*B*cos( 
1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8+(-168*A-360*B)*sin(1/2*d*x+1/2*c)^6*co 
s(1/2*d*x+1/2*c)+(168*A+280*B)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-4 
2*A-80*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-63*A*(sin(1/2*d*x+1/2*c) 
^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^ 
(1/2))+25*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)* 
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d* 
x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.33 \[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=\frac {2 \, {\left (15 \, B \cos \left (d x + c\right )^{2} + 21 \, A \cos \left (d x + c\right ) + 25 \, B\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 25 i \, \sqrt {2} B {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 25 i \, \sqrt {2} B {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 63 i \, \sqrt {2} A {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 63 i \, \sqrt {2} A {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{105 \, d} \] Input:

integrate(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c)),x, algorithm="fricas")
 

Output:

1/105*(2*(15*B*cos(d*x + c)^2 + 21*A*cos(d*x + c) + 25*B)*sqrt(cos(d*x + c 
))*sin(d*x + c) - 25*I*sqrt(2)*B*weierstrassPInverse(-4, 0, cos(d*x + c) + 
 I*sin(d*x + c)) + 25*I*sqrt(2)*B*weierstrassPInverse(-4, 0, cos(d*x + c) 
- I*sin(d*x + c)) + 63*I*sqrt(2)*A*weierstrassZeta(-4, 0, weierstrassPInve 
rse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 63*I*sqrt(2)*A*weierstrassZet 
a(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(5/2)*(A+B*cos(d*x+c)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c)),x, algorithm="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^(5/2), x)
 

Giac [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c)),x, algorithm="giac")
 

Output:

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^(5/2), x)
 

Mupad [B] (verification not implemented)

Time = 42.53 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.78 \[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=-\frac {2\,A\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,B\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(5/2)*(A + B*cos(c + d*x)),x)
 

Output:

- (2*A*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + 
 d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (2*B*cos(c + d*x)^(9/2)*sin(c + d 
*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)^(1/ 
2))
 

Reduce [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x)) \, dx=\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) a \] Input:

int(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c)),x)
 

Output:

int(sqrt(cos(c + d*x))*cos(c + d*x)**3,x)*b + int(sqrt(cos(c + d*x))*cos(c 
 + d*x)**2,x)*a