\(\int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 \, dx\) [569]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 135 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 \, dx=\frac {12 a b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \left (7 a^2+5 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 \left (7 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {4 a b \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 b^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d} \] Output:

12/5*a*b*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/21*(7*a^2+5*b^2)*Invers 
eJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+2/21*(7*a^2+5*b^2)*cos(d*x+c)^(1/2)*sin 
(d*x+c)/d+4/5*a*b*cos(d*x+c)^(3/2)*sin(d*x+c)/d+2/7*b^2*cos(d*x+c)^(5/2)*s 
in(d*x+c)/d
 

Mathematica [A] (verified)

Time = 1.05 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.73 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 \, dx=\frac {252 a b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 \left (7 a^2+5 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sqrt {\cos (c+d x)} \left (70 a^2+65 b^2+84 a b \cos (c+d x)+15 b^2 \cos (2 (c+d x))\right ) \sin (c+d x)}{105 d} \] Input:

Integrate[Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^2,x]
 

Output:

(252*a*b*EllipticE[(c + d*x)/2, 2] + 10*(7*a^2 + 5*b^2)*EllipticF[(c + d*x 
)/2, 2] + Sqrt[Cos[c + d*x]]*(70*a^2 + 65*b^2 + 84*a*b*Cos[c + d*x] + 15*b 
^2*Cos[2*(c + d*x)])*Sin[c + d*x])/(105*d)
 

Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.96, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 3268, 3042, 3115, 3042, 3119, 3493, 3042, 3115, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2dx\)

\(\Big \downarrow \) 3268

\(\displaystyle \int \cos ^{\frac {3}{2}}(c+d x) \left (a^2+b^2 \cos ^2(c+d x)\right )dx+2 a b \int \cos ^{\frac {5}{2}}(c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a^2+b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx\)

\(\Big \downarrow \) 3115

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a^2+b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \left (\frac {3}{5} \int \sqrt {\cos (c+d x)}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a^2+b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \left (\frac {3}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a^2+b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )\)

\(\Big \downarrow \) 3493

\(\displaystyle \frac {1}{7} \left (7 a^2+5 b^2\right ) \int \cos ^{\frac {3}{2}}(c+d x)dx+2 a b \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (7 a^2+5 b^2\right ) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx+2 a b \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {1}{7} \left (7 a^2+5 b^2\right ) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+2 a b \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (7 a^2+5 b^2\right ) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+2 a b \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{7} \left (7 a^2+5 b^2\right ) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+2 a b \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

Input:

Int[Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^2,x]
 

Output:

(2*b^2*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(7*d) + ((7*a^2 + 5*b^2)*((2*Ellip 
ticF[(c + d*x)/2, 2])/(3*d) + (2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d)))/ 
7 + 2*a*b*((6*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*Cos[c + d*x]^(3/2)*Sin 
[c + d*x])/(5*d))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3268
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)])^2, x_Symbol] :> Simp[2*c*(d/b)   Int[(b*Sin[e + f*x])^(m + 1), x], x] 
+ Int[(b*Sin[e + f*x])^m*(c^2 + d^2*Sin[e + f*x]^2), x] /; FreeQ[{b, c, d, 
e, f, m}, x]
 

rule 3493
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*( 
x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f 
*(m + 2))), x] + Simp[(A*(m + 2) + C*(m + 1))/(m + 2)   Int[(b*Sin[e + f*x] 
)^m, x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(361\) vs. \(2(122)=244\).

Time = 13.93 (sec) , antiderivative size = 362, normalized size of antiderivative = 2.68

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (240 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} b^{2}+\left (-336 a b -360 b^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (140 a^{2}+336 a b +280 b^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-70 a^{2}-84 a b -80 b^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+35 a^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+25 b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-126 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b \right )}{105 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(362\)
parts \(-\frac {2 a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 b^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (48 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}-120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-72 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {4 a b \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(587\)

Input:

int(cos(d*x+c)^(3/2)*(a+cos(d*x+c)*b)^2,x,method=_RETURNVERBOSE)
 

Output:

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*cos(1/ 
2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8*b^2+(-336*a*b-360*b^2)*sin(1/2*d*x+1/2*c 
)^6*cos(1/2*d*x+1/2*c)+(140*a^2+336*a*b+280*b^2)*sin(1/2*d*x+1/2*c)^4*cos( 
1/2*d*x+1/2*c)+(-70*a^2-84*a*b-80*b^2)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/ 
2*c)+35*a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)* 
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+25*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)* 
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-126 
*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(c 
os(1/2*d*x+1/2*c),2^(1/2))*a*b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c 
)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.33 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 \, dx=\frac {126 i \, \sqrt {2} a b {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 126 i \, \sqrt {2} a b {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (15 \, b^{2} \cos \left (d x + c\right )^{2} + 42 \, a b \cos \left (d x + c\right ) + 35 \, a^{2} + 25 \, b^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, \sqrt {2} {\left (7 i \, a^{2} + 5 i \, b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, \sqrt {2} {\left (-7 i \, a^{2} - 5 i \, b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )}{105 \, d} \] Input:

integrate(cos(d*x+c)^(3/2)*(a+b*cos(d*x+c))^2,x, algorithm="fricas")
 

Output:

1/105*(126*I*sqrt(2)*a*b*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, 
 cos(d*x + c) + I*sin(d*x + c))) - 126*I*sqrt(2)*a*b*weierstrassZeta(-4, 0 
, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(15*b^2*c 
os(d*x + c)^2 + 42*a*b*cos(d*x + c) + 35*a^2 + 25*b^2)*sqrt(cos(d*x + c))* 
sin(d*x + c) - 5*sqrt(2)*(7*I*a^2 + 5*I*b^2)*weierstrassPInverse(-4, 0, co 
s(d*x + c) + I*sin(d*x + c)) - 5*sqrt(2)*(-7*I*a^2 - 5*I*b^2)*weierstrassP 
Inverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)))/d
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(3/2)*(a+b*cos(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(a+b*cos(d*x+c))^2,x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

integrate((b*cos(d*x + c) + a)^2*cos(d*x + c)^(3/2), x)
 

Giac [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(a+b*cos(d*x+c))^2,x, algorithm="giac")
 

Output:

integrate((b*cos(d*x + c) + a)^2*cos(d*x + c)^(3/2), x)
 

Mupad [B] (verification not implemented)

Time = 44.84 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.95 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 \, dx=\frac {2\,\left (a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+a^2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )\right )}{3\,d}-\frac {2\,b^2\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {4\,a\,b\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^2,x)
 

Output:

(2*(a^2*ellipticF(c/2 + (d*x)/2, 2) + a^2*cos(c + d*x)^(1/2)*sin(c + d*x)) 
)/(3*d) - (2*b^2*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/ 
4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)^(1/2)) - (4*a*b*cos(c + d*x)^(7/ 
2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + 
 d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2 \, dx=\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) a^{2}+\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) b^{2}+2 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) a b \] Input:

int(cos(d*x+c)^(3/2)*(a+b*cos(d*x+c))^2,x)
 

Output:

int(sqrt(cos(c + d*x))*cos(c + d*x),x)*a**2 + int(sqrt(cos(c + d*x))*cos(c 
 + d*x)**3,x)*b**2 + 2*int(sqrt(cos(c + d*x))*cos(c + d*x)**2,x)*a*b