\(\int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \, dx\) [570]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 101 \[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \, dx=\frac {2 \left (5 a^2+3 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {4 a b \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 b^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d} \] Output:

2/5*(5*a^2+3*b^2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/3*a*b*InverseJ 
acobiAM(1/2*d*x+1/2*c,2^(1/2))/d+4/3*a*b*cos(d*x+c)^(1/2)*sin(d*x+c)/d+2/5 
*b^2*cos(d*x+c)^(3/2)*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 0.68 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.78 \[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \, dx=\frac {6 \left (5 a^2+3 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 a b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+2 b \sqrt {\cos (c+d x)} (10 a+3 b \cos (c+d x)) \sin (c+d x)}{15 d} \] Input:

Integrate[Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^2,x]
 

Output:

(6*(5*a^2 + 3*b^2)*EllipticE[(c + d*x)/2, 2] + 20*a*b*EllipticF[(c + d*x)/ 
2, 2] + 2*b*Sqrt[Cos[c + d*x]]*(10*a + 3*b*Cos[c + d*x])*Sin[c + d*x])/(15 
*d)
 

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3042, 3268, 3042, 3115, 3042, 3120, 3493, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2dx\)

\(\Big \downarrow \) 3268

\(\displaystyle \int \sqrt {\cos (c+d x)} \left (a^2+b^2 \cos ^2(c+d x)\right )dx+2 a b \int \cos ^{\frac {3}{2}}(c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a^2+b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx\)

\(\Big \downarrow \) 3115

\(\displaystyle \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a^2+b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a^2+b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a^2+b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\)

\(\Big \downarrow \) 3493

\(\displaystyle \frac {1}{5} \left (5 a^2+3 b^2\right ) \int \sqrt {\cos (c+d x)}dx+2 a b \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 b^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (5 a^2+3 b^2\right ) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+2 a b \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 b^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {2 \left (5 a^2+3 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+2 a b \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 b^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

Input:

Int[Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^2,x]
 

Output:

(2*(5*a^2 + 3*b^2)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*b^2*Cos[c + d*x]^ 
(3/2)*Sin[c + d*x])/(5*d) + 2*a*b*((2*EllipticF[(c + d*x)/2, 2])/(3*d) + ( 
2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3268
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)])^2, x_Symbol] :> Simp[2*c*(d/b)   Int[(b*Sin[e + f*x])^(m + 1), x], x] 
+ Int[(b*Sin[e + f*x])^m*(c^2 + d^2*Sin[e + f*x]^2), x] /; FreeQ[{b, c, d, 
e, f, m}, x]
 

rule 3493
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*( 
x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f 
*(m + 2))), x] + Simp[(A*(m + 2) + C*(m + 1))/(m + 2)   Int[(b*Sin[e + f*x] 
)^m, x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(356\) vs. \(2(92)=184\).

Time = 9.21 (sec) , antiderivative size = 357, normalized size of antiderivative = 3.53

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} b^{2}+40 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a b +24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b^{2}-20 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a b -6 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b^{2}+10 a b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-15 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-9 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}\right )}{15 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(357\)
parts \(\frac {2 a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 b^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {4 a b \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(521\)

Input:

int(cos(d*x+c)^(1/2)*(a+cos(d*x+c)*b)^2,x,method=_RETURNVERBOSE)
 

Output:

-2/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-24*cos(1/2 
*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6*b^2+40*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2 
*c)^4*a*b+24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*b^2-20*cos(1/2*d*x+1/ 
2*c)*sin(1/2*d*x+1/2*c)^2*a*b-6*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b^ 
2+10*a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ell 
ipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin( 
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2-9*(sin 
(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/ 
2*d*x+1/2*c),2^(1/2))*b^2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^ 
(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.60 \[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \, dx=\frac {-10 i \, \sqrt {2} a b {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 10 i \, \sqrt {2} a b {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, {\left (3 \, b^{2} \cos \left (d x + c\right ) + 10 \, a b\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 3 \, \sqrt {2} {\left (-5 i \, a^{2} - 3 i \, b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (5 i \, a^{2} + 3 i \, b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{15 \, d} \] Input:

integrate(cos(d*x+c)^(1/2)*(a+b*cos(d*x+c))^2,x, algorithm="fricas")
 

Output:

1/15*(-10*I*sqrt(2)*a*b*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d* 
x + c)) + 10*I*sqrt(2)*a*b*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin 
(d*x + c)) + 2*(3*b^2*cos(d*x + c) + 10*a*b)*sqrt(cos(d*x + c))*sin(d*x + 
c) - 3*sqrt(2)*(-5*I*a^2 - 3*I*b^2)*weierstrassZeta(-4, 0, weierstrassPInv 
erse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*(5*I*a^2 + 3*I*b^2 
)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d 
*x + c))))/d
 

Sympy [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(1/2)*(a+b*cos(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(a+b*cos(d*x+c))^2,x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

integrate((b*cos(d*x + c) + a)^2*sqrt(cos(d*x + c)), x)
 

Giac [F]

\[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(a+b*cos(d*x+c))^2,x, algorithm="giac")
 

Output:

integrate((b*cos(d*x + c) + a)^2*sqrt(cos(d*x + c)), x)
 

Mupad [B] (verification not implemented)

Time = 44.04 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.01 \[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \, dx=\frac {2\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,a\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3\,d}+\frac {4\,a\,b\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3\,d}-\frac {2\,b^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))^2,x)
 

Output:

(2*a^2*ellipticE(c/2 + (d*x)/2, 2))/d + (4*a*b*ellipticF(c/2 + (d*x)/2, 2) 
)/(3*d) + (4*a*b*cos(c + d*x)^(1/2)*sin(c + d*x))/(3*d) - (2*b^2*cos(c + d 
*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*( 
sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \, dx=\left (\int \sqrt {\cos \left (d x +c \right )}d x \right ) a^{2}+2 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) a b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) b^{2} \] Input:

int(cos(d*x+c)^(1/2)*(a+b*cos(d*x+c))^2,x)
 

Output:

int(sqrt(cos(c + d*x)),x)*a**2 + 2*int(sqrt(cos(c + d*x))*cos(c + d*x),x)* 
a*b + int(sqrt(cos(c + d*x))*cos(c + d*x)**2,x)*b**2