\(\int \frac {(a+b \cos (c+d x))^2}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [574]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 135 \[ \int \frac {(a+b \cos (c+d x))^2}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {2 \left (3 a^2+5 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (3 a^2+5 b^2\right ) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \] Output:

-2/5*(3*a^2+5*b^2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/3*a*b*Inverse 
JacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+2/5*a^2*sin(d*x+c)/d/cos(d*x+c)^(5/2)+4/ 
3*a*b*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2/5*(3*a^2+5*b^2)*sin(d*x+c)/d/cos(d*x 
+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.84 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.92 \[ \int \frac {(a+b \cos (c+d x))^2}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {-6 \left (3 a^2+5 b^2\right ) \cos ^{\frac {3}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 a b \cos ^{\frac {3}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+20 a b \sin (c+d x)+9 a^2 \sin (2 (c+d x))+15 b^2 \sin (2 (c+d x))+6 a^2 \tan (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)} \] Input:

Integrate[(a + b*Cos[c + d*x])^2/Cos[c + d*x]^(7/2),x]
 

Output:

(-6*(3*a^2 + 5*b^2)*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] + 20*a*b* 
Cos[c + d*x]^(3/2)*EllipticF[(c + d*x)/2, 2] + 20*a*b*Sin[c + d*x] + 9*a^2 
*Sin[2*(c + d*x)] + 15*b^2*Sin[2*(c + d*x)] + 6*a^2*Tan[c + d*x])/(15*d*Co 
s[c + d*x]^(3/2))
 

Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.93, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 3268, 3042, 3116, 3042, 3120, 3491, 3042, 3116, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x))^2}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3268

\(\displaystyle \int \frac {a^2+b^2 \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)}dx+2 a b \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a^2+b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+2 a b \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3116

\(\displaystyle \int \frac {a^2+b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+2 a b \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a^2+b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+2 a b \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \int \frac {a^2+b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+2 a b \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3491

\(\displaystyle \frac {1}{5} \left (3 a^2+5 b^2\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+2 a b \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (3 a^2+5 b^2\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+2 a b \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {1}{5} \left (3 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )+\frac {2 a^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+2 a b \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (3 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 a^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+2 a b \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{5} \left (3 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+2 a b \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

Input:

Int[(a + b*Cos[c + d*x])^2/Cos[c + d*x]^(7/2),x]
 

Output:

(2*a^2*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + 2*a*b*((2*EllipticF[(c + d 
*x)/2, 2])/(3*d) + (2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))) + ((3*a^2 + 
5*b^2)*((-2*EllipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c 
+ d*x]])))/5
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3268
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)])^2, x_Symbol] :> Simp[2*c*(d/b)   Int[(b*Sin[e + f*x])^(m + 1), x], x] 
+ Int[(b*Sin[e + f*x])^m*(c^2 + d^2*Sin[e + f*x]^2), x] /; FreeQ[{b, c, d, 
e, f, m}, x]
 

rule 3491
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x 
_)]^2), x_Symbol] :> Simp[A*Cos[e + f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f*(m 
+ 1))), x] + Simp[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1))   Int[(b*Sin[e + f* 
x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(632\) vs. \(2(122)=244\).

Time = 7.65 (sec) , antiderivative size = 633, normalized size of antiderivative = 4.69

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 a^{2} \left (24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-24 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{5 \left (8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+6 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {2 b^{2} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}+4 a b \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(633\)
parts \(\text {Expression too large to display}\) \(760\)

Input:

int((a+cos(d*x+c)*b)^2/cos(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/5*a^2/(8*sin 
(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/ 
2*d*x+1/2*c)^2*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*EllipticE(co 
s(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2* 
c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2 
*c)+12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)* 
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c) 
^2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c) 
^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^ 
4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*b^2/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/ 
2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2* 
d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d* 
x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+4*a*b*(-1/6*cos 
(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos( 
1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1 
/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Elli 
pticF(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2* 
c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.65 \[ \int \frac {(a+b \cos (c+d x))^2}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {-10 i \, \sqrt {2} a b \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 10 i \, \sqrt {2} a b \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (3 i \, a^{2} + 5 i \, b^{2}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (-3 i \, a^{2} - 5 i \, b^{2}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (10 \, a b \cos \left (d x + c\right ) + 3 \, {\left (3 \, a^{2} + 5 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 3 \, a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, d \cos \left (d x + c\right )^{3}} \] Input:

integrate((a+b*cos(d*x+c))^2/cos(d*x+c)^(7/2),x, algorithm="fricas")
 

Output:

1/15*(-10*I*sqrt(2)*a*b*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x 
+ c) + I*sin(d*x + c)) + 10*I*sqrt(2)*a*b*cos(d*x + c)^3*weierstrassPInver 
se(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(3*I*a^2 + 5*I*b^2)*c 
os(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
c) + I*sin(d*x + c))) - 3*sqrt(2)*(-3*I*a^2 - 5*I*b^2)*cos(d*x + c)^3*weie 
rstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c 
))) + 2*(10*a*b*cos(d*x + c) + 3*(3*a^2 + 5*b^2)*cos(d*x + c)^2 + 3*a^2)*s 
qrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^3)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^2}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))**2/cos(d*x+c)**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^2}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^2/cos(d*x+c)^(7/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

integrate((b*cos(d*x + c) + a)^2/cos(d*x + c)^(7/2), x)
 

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^2}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^2/cos(d*x+c)^(7/2),x, algorithm="giac")
 

Output:

integrate((b*cos(d*x + c) + a)^2/cos(d*x + c)^(7/2), x)
 

Mupad [B] (verification not implemented)

Time = 43.66 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.84 \[ \int \frac {(a+b \cos (c+d x))^2}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {6\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+30\,b^2\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )+20\,a\,b\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{15\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}} \] Input:

int((a + b*cos(c + d*x))^2/cos(c + d*x)^(7/2),x)
 

Output:

(6*a^2*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2) + 30*b^2* 
cos(c + d*x)^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2) + 
20*a*b*cos(c + d*x)*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^ 
2))/(15*d*cos(c + d*x)^(5/2)*(1 - cos(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \frac {(a+b \cos (c+d x))^2}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x \right ) a^{2}+2 \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) a b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) b^{2} \] Input:

int((a+b*cos(d*x+c))^2/cos(d*x+c)^(7/2),x)
 

Output:

int(sqrt(cos(c + d*x))/cos(c + d*x)**4,x)*a**2 + 2*int(sqrt(cos(c + d*x))/ 
cos(c + d*x)**3,x)*a*b + int(sqrt(cos(c + d*x))/cos(c + d*x)**2,x)*b**2