\(\int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx\) [595]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 346 \[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=-\frac {a \left (35 a^4-65 a^2 b^2+24 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 b^4 \left (a^2-b^2\right )^2 d}+\frac {\left (105 a^6-223 a^4 b^2+128 a^2 b^4+8 b^6\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{12 b^5 \left (a^2-b^2\right )^2 d}-\frac {a^3 \left (35 a^4-86 a^2 b^2+63 b^4\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{4 (a-b)^2 b^5 (a+b)^3 d}+\frac {\left (35 a^4-61 a^2 b^2+8 b^4\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{12 b^3 \left (a^2-b^2\right )^2 d}-\frac {a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {a^2 \left (7 a^2-13 b^2\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 b^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))} \] Output:

-1/4*a*(35*a^4-65*a^2*b^2+24*b^4)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b^ 
4/(a^2-b^2)^2/d+1/12*(105*a^6-223*a^4*b^2+128*a^2*b^4+8*b^6)*InverseJacobi 
AM(1/2*d*x+1/2*c,2^(1/2))/b^5/(a^2-b^2)^2/d-1/4*a^3*(35*a^4-86*a^2*b^2+63* 
b^4)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/(a-b)^2/b^5/(a+b)^3/ 
d+1/12*(35*a^4-61*a^2*b^2+8*b^4)*cos(d*x+c)^(1/2)*sin(d*x+c)/b^3/(a^2-b^2) 
^2/d-1/2*a^2*cos(d*x+c)^(5/2)*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))^2- 
1/4*a^2*(7*a^2-13*b^2)*cos(d*x+c)^(3/2)*sin(d*x+c)/b^2/(a^2-b^2)^2/d/(a+b* 
cos(d*x+c))
 

Mathematica [A] (warning: unable to verify)

Time = 3.63 (sec) , antiderivative size = 354, normalized size of antiderivative = 1.02 \[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\frac {\frac {4 \sqrt {\cos (c+d x)} \left (35 a^6-57 a^4 b^2+4 b^6+a b \left (49 a^4-83 a^2 b^2+16 b^4\right ) \cos (c+d x)+4 \left (-a^2 b+b^3\right )^2 \cos (2 (c+d x))\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 (a+b \cos (c+d x))^2}-\frac {\frac {2 \left (35 a^5-73 a^3 b^2+56 a b^4\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+\frac {16 \left (7 a^4-14 a^2 b^2-2 b^4\right ) \left ((a+b) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )\right )}{a+b}+\frac {6 \left (35 a^4-65 a^2 b^2+24 b^4\right ) \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{b^2 \sqrt {\sin ^2(c+d x)}}}{(a-b)^2 (a+b)^2}}{48 b^3 d} \] Input:

Integrate[Cos[c + d*x]^(9/2)/(a + b*Cos[c + d*x])^3,x]
 

Output:

((4*Sqrt[Cos[c + d*x]]*(35*a^6 - 57*a^4*b^2 + 4*b^6 + a*b*(49*a^4 - 83*a^2 
*b^2 + 16*b^4)*Cos[c + d*x] + 4*(-(a^2*b) + b^3)^2*Cos[2*(c + d*x)])*Sin[c 
 + d*x])/((a^2 - b^2)^2*(a + b*Cos[c + d*x])^2) - ((2*(35*a^5 - 73*a^3*b^2 
 + 56*a*b^4)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + (16*(7*a 
^4 - 14*a^2*b^2 - 2*b^4)*((a + b)*EllipticF[(c + d*x)/2, 2] - a*EllipticPi 
[(2*b)/(a + b), (c + d*x)/2, 2]))/(a + b) + (6*(35*a^4 - 65*a^2*b^2 + 24*b 
^4)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*Ellipt 
icF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a), Ar 
cSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(b^2*Sqrt[Sin[c + d*x]^2]))/( 
(a - b)^2*(a + b)^2))/(48*b^3*d)
 

Rubi [A] (verified)

Time = 2.28 (sec) , antiderivative size = 348, normalized size of antiderivative = 1.01, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.783, Rules used = {3042, 3271, 27, 3042, 3526, 27, 3042, 3528, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^3}dx\)

\(\Big \downarrow \) 3271

\(\displaystyle -\frac {\int \frac {\cos ^{\frac {3}{2}}(c+d x) \left (5 a^2-4 b \cos (c+d x) a-\left (7 a^2-4 b^2\right ) \cos ^2(c+d x)\right )}{2 (a+b \cos (c+d x))^2}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\cos ^{\frac {3}{2}}(c+d x) \left (5 a^2-4 b \cos (c+d x) a-\left (7 a^2-4 b^2\right ) \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2}dx}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (5 a^2-4 b \sin \left (c+d x+\frac {\pi }{2}\right ) a+\left (4 b^2-7 a^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3526

\(\displaystyle -\frac {\frac {a^2 \left (7 a^2-13 b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\int -\frac {\sqrt {\cos (c+d x)} \left (3 \left (7 a^2-13 b^2\right ) a^2-4 b \left (a^2-4 b^2\right ) \cos (c+d x) a-\left (35 a^4-61 b^2 a^2+8 b^4\right ) \cos ^2(c+d x)\right )}{2 (a+b \cos (c+d x))}dx}{b \left (a^2-b^2\right )}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\int \frac {\sqrt {\cos (c+d x)} \left (3 \left (7 a^2-13 b^2\right ) a^2-4 b \left (a^2-4 b^2\right ) \cos (c+d x) a-\left (35 a^4-61 b^2 a^2+8 b^4\right ) \cos ^2(c+d x)\right )}{a+b \cos (c+d x)}dx}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (7 a^2-13 b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (3 \left (7 a^2-13 b^2\right ) a^2-4 b \left (a^2-4 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a+\left (-35 a^4+61 b^2 a^2-8 b^4\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (7 a^2-13 b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3528

\(\displaystyle -\frac {\frac {\frac {2 \int -\frac {-3 a \left (35 a^4-65 b^2 a^2+24 b^4\right ) \cos ^2(c+d x)-4 b \left (7 a^4-14 b^2 a^2-2 b^4\right ) \cos (c+d x)+a \left (35 a^4-61 b^2 a^2+8 b^4\right )}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{3 b}-\frac {2 \left (35 a^4-61 a^2 b^2+8 b^4\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (7 a^2-13 b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {-\frac {\int \frac {-3 a \left (35 a^4-65 b^2 a^2+24 b^4\right ) \cos ^2(c+d x)-4 b \left (7 a^4-14 b^2 a^2-2 b^4\right ) \cos (c+d x)+a \left (35 a^4-61 b^2 a^2+8 b^4\right )}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{3 b}-\frac {2 \left (35 a^4-61 a^2 b^2+8 b^4\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (7 a^2-13 b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {-\frac {\int \frac {-3 a \left (35 a^4-65 b^2 a^2+24 b^4\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2-4 b \left (7 a^4-14 b^2 a^2-2 b^4\right ) \sin \left (c+d x+\frac {\pi }{2}\right )+a \left (35 a^4-61 b^2 a^2+8 b^4\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{3 b}-\frac {2 \left (35 a^4-61 a^2 b^2+8 b^4\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (7 a^2-13 b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3538

\(\displaystyle -\frac {\frac {-\frac {-\frac {3 a \left (35 a^4-65 a^2 b^2+24 b^4\right ) \int \sqrt {\cos (c+d x)}dx}{b}-\frac {\int -\frac {a b \left (35 a^4-61 b^2 a^2+8 b^4\right )+\left (105 a^6-223 b^2 a^4+128 b^4 a^2+8 b^6\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{3 b}-\frac {2 \left (35 a^4-61 a^2 b^2+8 b^4\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (7 a^2-13 b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {-\frac {\frac {\int \frac {a b \left (35 a^4-61 b^2 a^2+8 b^4\right )+\left (105 a^6-223 b^2 a^4+128 b^4 a^2+8 b^6\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}-\frac {3 a \left (35 a^4-65 a^2 b^2+24 b^4\right ) \int \sqrt {\cos (c+d x)}dx}{b}}{3 b}-\frac {2 \left (35 a^4-61 a^2 b^2+8 b^4\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (7 a^2-13 b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {-\frac {\frac {\int \frac {a b \left (35 a^4-61 b^2 a^2+8 b^4\right )+\left (105 a^6-223 b^2 a^4+128 b^4 a^2+8 b^6\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}-\frac {3 a \left (35 a^4-65 a^2 b^2+24 b^4\right ) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{3 b}-\frac {2 \left (35 a^4-61 a^2 b^2+8 b^4\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (7 a^2-13 b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {\frac {-\frac {\frac {\int \frac {a b \left (35 a^4-61 b^2 a^2+8 b^4\right )+\left (105 a^6-223 b^2 a^4+128 b^4 a^2+8 b^6\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}-\frac {6 a \left (35 a^4-65 a^2 b^2+24 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{3 b}-\frac {2 \left (35 a^4-61 a^2 b^2+8 b^4\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (7 a^2-13 b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3481

\(\displaystyle -\frac {\frac {-\frac {\frac {\frac {\left (105 a^6-223 a^4 b^2+128 a^2 b^4+8 b^6\right ) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}-\frac {3 a^3 \left (35 a^4-86 a^2 b^2+63 b^4\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{b}-\frac {6 a \left (35 a^4-65 a^2 b^2+24 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{3 b}-\frac {2 \left (35 a^4-61 a^2 b^2+8 b^4\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (7 a^2-13 b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {-\frac {\frac {\frac {\left (105 a^6-223 a^4 b^2+128 a^2 b^4+8 b^6\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {3 a^3 \left (35 a^4-86 a^2 b^2+63 b^4\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}}{b}-\frac {6 a \left (35 a^4-65 a^2 b^2+24 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{3 b}-\frac {2 \left (35 a^4-61 a^2 b^2+8 b^4\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (7 a^2-13 b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {\frac {-\frac {\frac {\frac {2 \left (105 a^6-223 a^4 b^2+128 a^2 b^4+8 b^6\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}-\frac {3 a^3 \left (35 a^4-86 a^2 b^2+63 b^4\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}}{b}-\frac {6 a \left (35 a^4-65 a^2 b^2+24 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{3 b}-\frac {2 \left (35 a^4-61 a^2 b^2+8 b^4\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (7 a^2-13 b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3284

\(\displaystyle -\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}-\frac {\frac {a^2 \left (7 a^2-13 b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {-\frac {2 \left (35 a^4-61 a^2 b^2+8 b^4\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}-\frac {\frac {\frac {2 \left (105 a^6-223 a^4 b^2+128 a^2 b^4+8 b^6\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}-\frac {6 a^3 \left (35 a^4-86 a^2 b^2+63 b^4\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b d (a+b)}}{b}-\frac {6 a \left (35 a^4-65 a^2 b^2+24 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{3 b}}{2 b \left (a^2-b^2\right )}}{4 b \left (a^2-b^2\right )}\)

Input:

Int[Cos[c + d*x]^(9/2)/(a + b*Cos[c + d*x])^3,x]
 

Output:

-1/2*(a^2*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Cos[c + 
 d*x])^2) - ((a^2*(7*a^2 - 13*b^2)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(b*(a^ 
2 - b^2)*d*(a + b*Cos[c + d*x])) + (-1/3*((-6*a*(35*a^4 - 65*a^2*b^2 + 24* 
b^4)*EllipticE[(c + d*x)/2, 2])/(b*d) + ((2*(105*a^6 - 223*a^4*b^2 + 128*a 
^2*b^4 + 8*b^6)*EllipticF[(c + d*x)/2, 2])/(b*d) - (6*a^3*(35*a^4 - 86*a^2 
*b^2 + 63*b^4)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b*(a + b)*d))/b 
)/b - (2*(35*a^4 - 61*a^2*b^2 + 8*b^4)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3 
*b*d))/(2*b*(a^2 - b^2)))/(4*b*(a^2 - b^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3271
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*Co 
s[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f* 
(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin 
[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^ 
2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 + c*d*(a^2 
+ b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - 
 d^2) - m*(b*c - a*d)^2 + d*n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x] 
, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - 
b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || 
IntegersQ[2*m, 2*n])
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3526
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^(m - 
 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + (c*C - B* 
d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 
1) - a*c*(n + 2))) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x 
] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f 
*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d 
, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]
 

rule 3528
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_ 
.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x 
])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Simp[1/(d*(m + 
n + 2))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A* 
d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2) - C*(a 
*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + 
 n + 2))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n} 
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[ 
m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2193\) vs. \(2(333)=666\).

Time = 82.40 (sec) , antiderivative size = 2194, normalized size of antiderivative = 6.34

method result size
default \(\text {Expression too large to display}\) \(2194\)

Input:

int(cos(d*x+c)^(9/2)/(a+cos(d*x+c)*b)^3,x,method=_RETURNVERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*(6*a^2+3*a*b 
+b^2)/b^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/( 
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+ 
1/2*c),2^(1/2))+4/3/b^3*(2*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-sin(1/2 
*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2 
*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*(sin(1/2*d* 
x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1 
/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+40*a^ 
3/b^4/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2 
+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi( 
cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+10/b^5*a^4*(-b^2/a/(a^2-b^2)*cos(1/ 
2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos 
(1/2*d*x+1/2*c)^2+a-b)-1/2/a/(a+b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/ 
2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/ 
2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2*b/(a^2-b^2)/a*(sin(1/2*d*x+1/ 
2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+s 
in(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*b/(a^ 
2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(- 
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1 
/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1...
 

Fricas [F]

\[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {9}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \] Input:

integrate(cos(d*x+c)^(9/2)/(a+b*cos(d*x+c))^3,x, algorithm="fricas")
 

Output:

integral(cos(d*x + c)^(9/2)/(b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*x + c)^2 + 
 3*a^2*b*cos(d*x + c) + a^3), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(9/2)/(a+b*cos(d*x+c))**3,x)
                                                                                    
                                                                                    
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {9}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \] Input:

integrate(cos(d*x+c)^(9/2)/(a+b*cos(d*x+c))^3,x, algorithm="maxima")
 

Output:

integrate(cos(d*x + c)^(9/2)/(b*cos(d*x + c) + a)^3, x)
 

Giac [F]

\[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {9}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \] Input:

integrate(cos(d*x+c)^(9/2)/(a+b*cos(d*x+c))^3,x, algorithm="giac")
 

Output:

integrate(cos(d*x + c)^(9/2)/(b*cos(d*x + c) + a)^3, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{9/2}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^3} \,d x \] Input:

int(cos(c + d*x)^(9/2)/(a + b*cos(c + d*x))^3,x)
 

Output:

int(cos(c + d*x)^(9/2)/(a + b*cos(c + d*x))^3, x)
 

Reduce [F]

\[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{4}}{\cos \left (d x +c \right )^{3} b^{3}+3 \cos \left (d x +c \right )^{2} a \,b^{2}+3 \cos \left (d x +c \right ) a^{2} b +a^{3}}d x \] Input:

int(cos(d*x+c)^(9/2)/(a+b*cos(d*x+c))^3,x)
 

Output:

int((sqrt(cos(c + d*x))*cos(c + d*x)**4)/(cos(c + d*x)**3*b**3 + 3*cos(c + 
 d*x)**2*a*b**2 + 3*cos(c + d*x)*a**2*b + a**3),x)