\(\int \frac {\cos ^{\frac {7}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx\) [596]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 282 \[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\frac {\left (15 a^4-29 a^2 b^2+8 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 b^3 \left (a^2-b^2\right )^2 d}-\frac {3 a \left (5 a^4-11 a^2 b^2+8 b^4\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{4 b^4 \left (a^2-b^2\right )^2 d}+\frac {a^2 \left (15 a^4-38 a^2 b^2+35 b^4\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{4 (a-b)^2 b^4 (a+b)^3 d}-\frac {a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {a^2 \left (5 a^2-11 b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 b^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))} \] Output:

1/4*(15*a^4-29*a^2*b^2+8*b^4)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b^3/(a 
^2-b^2)^2/d-3/4*a*(5*a^4-11*a^2*b^2+8*b^4)*InverseJacobiAM(1/2*d*x+1/2*c,2 
^(1/2))/b^4/(a^2-b^2)^2/d+1/4*a^2*(15*a^4-38*a^2*b^2+35*b^4)*EllipticPi(si 
n(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/(a-b)^2/b^4/(a+b)^3/d-1/2*a^2*cos(d*x+ 
c)^(3/2)*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))^2-1/4*a^2*(5*a^2-11*b^2 
)*cos(d*x+c)^(1/2)*sin(d*x+c)/b^2/(a^2-b^2)^2/d/(a+b*cos(d*x+c))
 

Mathematica [A] (warning: unable to verify)

Time = 3.26 (sec) , antiderivative size = 309, normalized size of antiderivative = 1.10 \[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\frac {-\frac {2 a^2 \sqrt {\cos (c+d x)} \left (5 a^3-11 a b^2+b \left (7 a^2-13 b^2\right ) \cos (c+d x)\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 (a+b \cos (c+d x))^2}+\frac {\frac {\left (5 a^4-7 a^2 b^2+8 b^4\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+\frac {8 \left (a^3-4 a b^2\right ) \left ((a+b) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )\right )}{a+b}+\frac {\left (15 a^4-29 a^2 b^2+8 b^4\right ) \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a b^2 \sqrt {\sin ^2(c+d x)}}}{(a-b)^2 (a+b)^2}}{8 b^2 d} \] Input:

Integrate[Cos[c + d*x]^(7/2)/(a + b*Cos[c + d*x])^3,x]
 

Output:

((-2*a^2*Sqrt[Cos[c + d*x]]*(5*a^3 - 11*a*b^2 + b*(7*a^2 - 13*b^2)*Cos[c + 
 d*x])*Sin[c + d*x])/((a^2 - b^2)^2*(a + b*Cos[c + d*x])^2) + (((5*a^4 - 7 
*a^2*b^2 + 8*b^4)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + (8* 
(a^3 - 4*a*b^2)*((a + b)*EllipticF[(c + d*x)/2, 2] - a*EllipticPi[(2*b)/(a 
 + b), (c + d*x)/2, 2]))/(a + b) + ((15*a^4 - 29*a^2*b^2 + 8*b^4)*(-2*a*b* 
EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[S 
qrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Co 
s[c + d*x]]], -1])*Sin[c + d*x])/(a*b^2*Sqrt[Sin[c + d*x]^2]))/((a - b)^2* 
(a + b)^2))/(8*b^2*d)
 

Rubi [A] (verified)

Time = 1.75 (sec) , antiderivative size = 287, normalized size of antiderivative = 1.02, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.652, Rules used = {3042, 3271, 27, 3042, 3526, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^3}dx\)

\(\Big \downarrow \) 3271

\(\displaystyle -\frac {\int \frac {\sqrt {\cos (c+d x)} \left (3 a^2-4 b \cos (c+d x) a-\left (5 a^2-4 b^2\right ) \cos ^2(c+d x)\right )}{2 (a+b \cos (c+d x))^2}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\sqrt {\cos (c+d x)} \left (3 a^2-4 b \cos (c+d x) a-\left (5 a^2-4 b^2\right ) \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2}dx}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (3 a^2-4 b \sin \left (c+d x+\frac {\pi }{2}\right ) a+\left (4 b^2-5 a^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3526

\(\displaystyle -\frac {\frac {a^2 \left (5 a^2-11 b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\int -\frac {\left (5 a^2-11 b^2\right ) a^2-4 b \left (a^2-4 b^2\right ) \cos (c+d x) a-\left (15 a^4-29 b^2 a^2+8 b^4\right ) \cos ^2(c+d x)}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b \left (a^2-b^2\right )}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\int \frac {\left (5 a^2-11 b^2\right ) a^2-4 b \left (a^2-4 b^2\right ) \cos (c+d x) a-\left (15 a^4-29 b^2 a^2+8 b^4\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (5 a^2-11 b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {\left (5 a^2-11 b^2\right ) a^2-4 b \left (a^2-4 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a+\left (-15 a^4+29 b^2 a^2-8 b^4\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (5 a^2-11 b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3538

\(\displaystyle -\frac {\frac {-\frac {\left (15 a^4-29 a^2 b^2+8 b^4\right ) \int \sqrt {\cos (c+d x)}dx}{b}-\frac {\int -\frac {b \left (5 a^2-11 b^2\right ) a^2+3 \left (5 a^4-11 b^2 a^2+8 b^4\right ) \cos (c+d x) a}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (5 a^2-11 b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {\frac {\int \frac {b \left (5 a^2-11 b^2\right ) a^2+3 \left (5 a^4-11 b^2 a^2+8 b^4\right ) \cos (c+d x) a}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}-\frac {\left (15 a^4-29 a^2 b^2+8 b^4\right ) \int \sqrt {\cos (c+d x)}dx}{b}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (5 a^2-11 b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {\int \frac {b \left (5 a^2-11 b^2\right ) a^2+3 \left (5 a^4-11 b^2 a^2+8 b^4\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}-\frac {\left (15 a^4-29 a^2 b^2+8 b^4\right ) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (5 a^2-11 b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {\frac {\frac {\int \frac {b \left (5 a^2-11 b^2\right ) a^2+3 \left (5 a^4-11 b^2 a^2+8 b^4\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}-\frac {2 \left (15 a^4-29 a^2 b^2+8 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (5 a^2-11 b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3481

\(\displaystyle -\frac {\frac {\frac {\frac {3 a \left (5 a^4-11 a^2 b^2+8 b^4\right ) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}-\frac {a^2 \left (15 a^4-38 a^2 b^2+35 b^4\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{b}-\frac {2 \left (15 a^4-29 a^2 b^2+8 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (5 a^2-11 b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {\frac {3 a \left (5 a^4-11 a^2 b^2+8 b^4\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a^2 \left (15 a^4-38 a^2 b^2+35 b^4\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}}{b}-\frac {2 \left (15 a^4-29 a^2 b^2+8 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (5 a^2-11 b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {\frac {\frac {\frac {6 a \left (5 a^4-11 a^2 b^2+8 b^4\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}-\frac {a^2 \left (15 a^4-38 a^2 b^2+35 b^4\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}}{b}-\frac {2 \left (15 a^4-29 a^2 b^2+8 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (5 a^2-11 b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{4 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3284

\(\displaystyle -\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}-\frac {\frac {a^2 \left (5 a^2-11 b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {\frac {\frac {6 a \left (5 a^4-11 a^2 b^2+8 b^4\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}-\frac {2 a^2 \left (15 a^4-38 a^2 b^2+35 b^4\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b d (a+b)}}{b}-\frac {2 \left (15 a^4-29 a^2 b^2+8 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 b \left (a^2-b^2\right )}}{4 b \left (a^2-b^2\right )}\)

Input:

Int[Cos[c + d*x]^(7/2)/(a + b*Cos[c + d*x])^3,x]
 

Output:

-1/2*(a^2*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Cos[c + 
 d*x])^2) - (((-2*(15*a^4 - 29*a^2*b^2 + 8*b^4)*EllipticE[(c + d*x)/2, 2]) 
/(b*d) + ((6*a*(5*a^4 - 11*a^2*b^2 + 8*b^4)*EllipticF[(c + d*x)/2, 2])/(b* 
d) - (2*a^2*(15*a^4 - 38*a^2*b^2 + 35*b^4)*EllipticPi[(2*b)/(a + b), (c + 
d*x)/2, 2])/(b*(a + b)*d))/b)/(2*b*(a^2 - b^2)) + (a^2*(5*a^2 - 11*b^2)*Sq 
rt[Cos[c + d*x]]*Sin[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Cos[c + d*x])))/(4* 
b*(a^2 - b^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3271
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*Co 
s[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f* 
(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin 
[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^ 
2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 + c*d*(a^2 
+ b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - 
 d^2) - m*(b*c - a*d)^2 + d*n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x] 
, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - 
b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || 
IntegersQ[2*m, 2*n])
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3526
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^(m - 
 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + (c*C - B* 
d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 
1) - a*c*(n + 2))) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x 
] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f 
*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d 
, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1934\) vs. \(2(273)=546\).

Time = 82.22 (sec) , antiderivative size = 1935, normalized size of antiderivative = 6.86

method result size
default \(\text {Expression too large to display}\) \(1935\)

Input:

int(cos(d*x+c)^(7/2)/(a+cos(d*x+c)*b)^3,x,method=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/b^4/(-2*sin 
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2) 
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(3*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)) 
*a+b*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2/b^4*a^4*(-1/2*b^2/a/(a^2-b^2 
)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/ 
(2*b*cos(1/2*d*x+1/2*c)^2+a-b)^2-3/4*b^2*(3*a^2-b^2)/a^2/(a^2-b^2)^2*cos(1 
/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*co 
s(1/2*d*x+1/2*c)^2+a-b)-7/8/(a+b)/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*( 
-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2* 
c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/4/(a+b)/(a^2-b^2)/a*(s 
in(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d 
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/ 
2))*b+3/8/(a+b)/(a^2-b^2)/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x 
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*El 
lipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-9/8*b/(a^2-b^2)^2*(sin(1/2*d*x+1/2 
*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+si 
n(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3/8*b^3/a^ 
2/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/ 
2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2* 
d*x+1/2*c),2^(1/2))+9/8*b/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*...
 

Fricas [F]

\[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {7}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \] Input:

integrate(cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^3,x, algorithm="fricas")
 

Output:

integral(cos(d*x + c)^(7/2)/(b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*x + c)^2 + 
 3*a^2*b*cos(d*x + c) + a^3), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(7/2)/(a+b*cos(d*x+c))**3,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {7}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \] Input:

integrate(cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^3,x, algorithm="maxima")
 

Output:

integrate(cos(d*x + c)^(7/2)/(b*cos(d*x + c) + a)^3, x)
 

Giac [F]

\[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {7}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \] Input:

integrate(cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^3,x, algorithm="giac")
 

Output:

integrate(cos(d*x + c)^(7/2)/(b*cos(d*x + c) + a)^3, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{7/2}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^3} \,d x \] Input:

int(cos(c + d*x)^(7/2)/(a + b*cos(c + d*x))^3,x)
 

Output:

int(cos(c + d*x)^(7/2)/(a + b*cos(c + d*x))^3, x)
 

Reduce [F]

\[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}}{\cos \left (d x +c \right )^{3} b^{3}+3 \cos \left (d x +c \right )^{2} a \,b^{2}+3 \cos \left (d x +c \right ) a^{2} b +a^{3}}d x \] Input:

int(cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^3,x)
 

Output:

int((sqrt(cos(c + d*x))*cos(c + d*x)**3)/(cos(c + d*x)**3*b**3 + 3*cos(c + 
 d*x)**2*a*b**2 + 3*cos(c + d*x)*a**2*b + a**3),x)