\(\int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {-3-2 \cos (c+d x)}} \, dx\) [675]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 75 \[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {-3-2 \cos (c+d x)}} \, dx=-\frac {3 \cot (c+d x) \operatorname {EllipticPi}\left (\frac {5}{2},\arcsin \left (\frac {\sqrt {-3-2 \cos (c+d x)}}{\sqrt {5} \sqrt {-\cos (c+d x)}}\right ),-5\right ) \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)}}{d} \] Output:

-3*cot(d*x+c)*EllipticPi(1/5*(-3-2*cos(d*x+c))^(1/2)*5^(1/2)/(-cos(d*x+c)) 
^(1/2),5/2,I*5^(1/2))*(1-sec(d*x+c))^(1/2)*(1+sec(d*x+c))^(1/2)/d
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.33 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.71 \[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {-3-2 \cos (c+d x)}} \, dx=-\frac {2 i \cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (\operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {5}}\right ),-5\right )-2 \operatorname {EllipticPi}\left (5,i \text {arcsinh}\left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {5}}\right ),-5\right )\right ) \sqrt {\cos (c+d x) (3+2 \cos (c+d x)) \sec ^4\left (\frac {1}{2} (c+d x)\right )}}{d \sqrt {-3-2 \cos (c+d x)} \sqrt {-\cos (c+d x)}} \] Input:

Integrate[Sqrt[-Cos[c + d*x]]/Sqrt[-3 - 2*Cos[c + d*x]],x]
 

Output:

((-2*I)*Cos[(c + d*x)/2]^2*(EllipticF[I*ArcSinh[Tan[(c + d*x)/2]/Sqrt[5]], 
 -5] - 2*EllipticPi[5, I*ArcSinh[Tan[(c + d*x)/2]/Sqrt[5]], -5])*Sqrt[Cos[ 
c + d*x]*(3 + 2*Cos[c + d*x])*Sec[(c + d*x)/2]^4])/(d*Sqrt[-3 - 2*Cos[c + 
d*x]]*Sqrt[-Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {3042, 3287}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {-2 \cos (c+d x)-3}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {-\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {-2 \sin \left (c+d x+\frac {\pi }{2}\right )-3}}dx\)

\(\Big \downarrow \) 3287

\(\displaystyle -\frac {3 \cot (c+d x) \sqrt {1-\sec (c+d x)} \sqrt {\sec (c+d x)+1} \operatorname {EllipticPi}\left (\frac {5}{2},\arcsin \left (\frac {\sqrt {-2 \cos (c+d x)-3}}{\sqrt {5} \sqrt {-\cos (c+d x)}}\right ),-5\right )}{d}\)

Input:

Int[Sqrt[-Cos[c + d*x]]/Sqrt[-3 - 2*Cos[c + d*x]],x]
 

Output:

(-3*Cot[c + d*x]*EllipticPi[5/2, ArcSin[Sqrt[-3 - 2*Cos[c + d*x]]/(Sqrt[5] 
*Sqrt[-Cos[c + d*x]])], -5]*Sqrt[1 - Sec[c + d*x]]*Sqrt[1 + Sec[c + d*x]]) 
/d
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3287
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*c*Rt[b*(c + d), 2]*Tan[e + f*x]*Sqrt[1 + Csc[e 
 + f*x]]*(Sqrt[1 - Csc[e + f*x]]/(d*f*Sqrt[c^2 - d^2]))*EllipticPi[(c + d)/ 
d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], 
-(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && GtQ[c^2 - d^2, 0] && 
PosQ[(c + d)/b] && GtQ[c^2, 0]
 
Maple [A] (verified)

Time = 8.61 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.79

method result size
default \(-\frac {\sqrt {2}\, \sqrt {10}\, \sqrt {\frac {3+2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {-\cos \left (d x +c \right )}\, \left (-\operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \frac {i \sqrt {5}}{5}\right )+2 \operatorname {EllipticPi}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), -1, \frac {i \sqrt {5}}{5}\right )\right ) \left (1+\sec \left (d x +c \right )\right )}{5 d \sqrt {-3-2 \cos \left (d x +c \right )}}\) \(134\)

Input:

int((-cos(d*x+c))^(1/2)/(-3-2*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/5/d/(-3-2*cos(d*x+c))^(1/2)*2^(1/2)*10^(1/2)*((3+2*cos(d*x+c))/(cos(d*x 
+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(-cos(d*x+c))^(1/2)*(-Elli 
pticF(cot(d*x+c)-csc(d*x+c),1/5*I*5^(1/2))+2*EllipticPi(cot(d*x+c)-csc(d*x 
+c),-1,1/5*I*5^(1/2)))*(1+sec(d*x+c))
 

Fricas [F]

\[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {-3-2 \cos (c+d x)}} \, dx=\int { \frac {\sqrt {-\cos \left (d x + c\right )}}{\sqrt {-2 \, \cos \left (d x + c\right ) - 3}} \,d x } \] Input:

integrate((-cos(d*x+c))^(1/2)/(-3-2*cos(d*x+c))^(1/2),x, algorithm="fricas 
")
 

Output:

integral(-sqrt(-cos(d*x + c))*sqrt(-2*cos(d*x + c) - 3)/(2*cos(d*x + c) + 
3), x)
 

Sympy [F]

\[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {-3-2 \cos (c+d x)}} \, dx=\int \frac {\sqrt {- \cos {\left (c + d x \right )}}}{\sqrt {- 2 \cos {\left (c + d x \right )} - 3}}\, dx \] Input:

integrate((-cos(d*x+c))**(1/2)/(-3-2*cos(d*x+c))**(1/2),x)
 

Output:

Integral(sqrt(-cos(c + d*x))/sqrt(-2*cos(c + d*x) - 3), x)
 

Maxima [F]

\[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {-3-2 \cos (c+d x)}} \, dx=\int { \frac {\sqrt {-\cos \left (d x + c\right )}}{\sqrt {-2 \, \cos \left (d x + c\right ) - 3}} \,d x } \] Input:

integrate((-cos(d*x+c))^(1/2)/(-3-2*cos(d*x+c))^(1/2),x, algorithm="maxima 
")
 

Output:

integrate(sqrt(-cos(d*x + c))/sqrt(-2*cos(d*x + c) - 3), x)
 

Giac [F]

\[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {-3-2 \cos (c+d x)}} \, dx=\int { \frac {\sqrt {-\cos \left (d x + c\right )}}{\sqrt {-2 \, \cos \left (d x + c\right ) - 3}} \,d x } \] Input:

integrate((-cos(d*x+c))^(1/2)/(-3-2*cos(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(-cos(d*x + c))/sqrt(-2*cos(d*x + c) - 3), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {-3-2 \cos (c+d x)}} \, dx=\int \frac {\sqrt {-\cos \left (c+d\,x\right )}}{\sqrt {-2\,\cos \left (c+d\,x\right )-3}} \,d x \] Input:

int((-cos(c + d*x))^(1/2)/(- 2*cos(c + d*x) - 3)^(1/2),x)
 

Output:

int((-cos(c + d*x))^(1/2)/(- 2*cos(c + d*x) - 3)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {-3-2 \cos (c+d x)}} \, dx=-\left (\int \frac {\sqrt {-2 \cos \left (d x +c \right )-3}\, \sqrt {\cos \left (d x +c \right )}}{2 \cos \left (d x +c \right )+3}d x \right ) i \] Input:

int((-cos(d*x+c))^(1/2)/(-3-2*cos(d*x+c))^(1/2),x)
 

Output:

 - int((sqrt( - 2*cos(c + d*x) - 3)*sqrt(cos(c + d*x)))/(2*cos(c + d*x) + 
3),x)*i