\(\int (a+b \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx\) [709]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 156 \[ \int (a+b \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx=\frac {6 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {8 a b^2 \sin (c+d x)}{5 d \sqrt {\sec (c+d x)}}+\frac {2 b^2 (b+a \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)} \] Output:

6/5*b*(5*a^2+b^2)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*s 
ec(d*x+c)^(1/2)/d+2*a*(a^2+b^2)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1 
/2*c,2^(1/2))*sec(d*x+c)^(1/2)/d+8/5*a*b^2*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2 
/5*b^2*(b+a*sec(d*x+c))*sin(d*x+c)/d/sec(d*x+c)^(3/2)
 

Mathematica [A] (verified)

Time = 0.92 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.68 \[ \int (a+b \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx=\frac {\sqrt {\sec (c+d x)} \left (6 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 a \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+b^2 (5 a+b \cos (c+d x)) \sin (2 (c+d x))\right )}{5 d} \] Input:

Integrate[(a + b*Cos[c + d*x])^3*Sqrt[Sec[c + d*x]],x]
 

Output:

(Sqrt[Sec[c + d*x]]*(6*b*(5*a^2 + b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d 
*x)/2, 2] + 10*a*(a^2 + b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] 
+ b^2*(5*a + b*Cos[c + d*x])*Sin[2*(c + d*x)]))/(5*d)
 

Rubi [A] (verified)

Time = 1.04 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.01, number of steps used = 16, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.696, Rules used = {3042, 3717, 3042, 4328, 27, 3042, 4535, 3042, 4258, 3042, 3119, 4533, 3042, 4258, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\sec (c+d x)} (a+b \cos (c+d x))^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^3dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {(a \sec (c+d x)+b)^3}{\sec ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+b\right )^3}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 4328

\(\displaystyle \frac {2}{5} \int \frac {12 a b^2+3 \left (5 a^2+b^2\right ) \sec (c+d x) b+a \left (5 a^2+b^2\right ) \sec ^2(c+d x)}{2 \sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \frac {12 a b^2+3 \left (5 a^2+b^2\right ) \sec (c+d x) b+a \left (5 a^2+b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \frac {12 a b^2+3 \left (5 a^2+b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right ) b+a \left (5 a^2+b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4535

\(\displaystyle \frac {1}{5} \left (\int \frac {12 a b^2+a \left (5 a^2+b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)}dx+3 b \left (5 a^2+b^2\right ) \int \frac {1}{\sqrt {\sec (c+d x)}}dx\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (3 b \left (5 a^2+b^2\right ) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\int \frac {12 a b^2+a \left (5 a^2+b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{5} \left (\int \frac {12 a b^2+a \left (5 a^2+b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+3 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\int \frac {12 a b^2+a \left (5 a^2+b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+3 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{5} \left (\int \frac {12 a b^2+a \left (5 a^2+b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {6 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4533

\(\displaystyle \frac {1}{5} \left (5 a \left (a^2+b^2\right ) \int \sqrt {\sec (c+d x)}dx+\frac {6 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a b^2 \sin (c+d x)}{d \sqrt {\sec (c+d x)}}\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (5 a \left (a^2+b^2\right ) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {6 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a b^2 \sin (c+d x)}{d \sqrt {\sec (c+d x)}}\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{5} \left (5 a \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {6 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a b^2 \sin (c+d x)}{d \sqrt {\sec (c+d x)}}\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (5 a \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a b^2 \sin (c+d x)}{d \sqrt {\sec (c+d x)}}\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{5} \left (\frac {10 a \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a b^2 \sin (c+d x)}{d \sqrt {\sec (c+d x)}}\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

Input:

Int[(a + b*Cos[c + d*x])^3*Sqrt[Sec[c + d*x]],x]
 

Output:

(2*b^2*(b + a*Sec[c + d*x])*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + ((6*b 
*(5*a^2 + b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d 
*x]])/d + (10*a*(a^2 + b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*S 
qrt[Sec[c + d*x]])/d + (8*a*b^2*Sin[c + d*x])/(d*Sqrt[Sec[c + d*x]]))/5
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4328
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[a^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)* 
((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/(d*n)   Int[(a + b*Csc[e + f*x])^(m 
 - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2* 
(n + 1))*Csc[e + f*x] - b*(b^2*n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], 
 x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2] && ((Int 
egerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))
 

rule 4533
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + 
Simp[(C*m + A*(m + 1))/(b^2*m)   Int[(b*Csc[e + f*x])^(m + 2), x], x] /; Fr 
eeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]
 

rule 4535
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]* 
(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[B/b   Int[(b*Cs 
c[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2) 
, x] /; FreeQ[{b, e, f, A, B, C, m}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(411\) vs. \(2(141)=282\).

Time = 17.01 (sec) , antiderivative size = 412, normalized size of antiderivative = 2.64

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} b^{3}+20 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a \,b^{2}+8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b^{3}-10 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a \,b^{2}-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b^{3}+5 a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+5 b^{2} a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-15 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2} b -3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{3}\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(412\)
parts \(-\frac {2 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 b^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 b^{2} a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {6 a^{2} b \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(659\)

Input:

int((a+cos(d*x+c)*b)^3*sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2/5*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*cos(1/2*d 
*x+1/2*c)*sin(1/2*d*x+1/2*c)^6*b^3+20*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c 
)^4*a*b^2+8*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*b^3-10*cos(1/2*d*x+1/2 
*c)*sin(1/2*d*x+1/2*c)^2*a*b^2-2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b 
^3+5*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ell 
ipticF(cos(1/2*d*x+1/2*c),2^(1/2))+5*b^2*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2 
*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15*(s 
in(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos( 
1/2*d*x+1/2*c),2^(1/2))*a^2*b-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d* 
x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^3)/(-2*sin(1/2 
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d* 
x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.24 \[ \int (a+b \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx=-\frac {5 \, \sqrt {2} {\left (i \, a^{3} + i \, a b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-i \, a^{3} - i \, a b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, \sqrt {2} {\left (-5 i \, a^{2} b - i \, b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, \sqrt {2} {\left (5 i \, a^{2} b + i \, b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (b^{3} \cos \left (d x + c\right )^{2} + 5 \, a b^{2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{5 \, d} \] Input:

integrate((a+b*cos(d*x+c))^3*sec(d*x+c)^(1/2),x, algorithm="fricas")
 

Output:

-1/5*(5*sqrt(2)*(I*a^3 + I*a*b^2)*weierstrassPInverse(-4, 0, cos(d*x + c) 
+ I*sin(d*x + c)) + 5*sqrt(2)*(-I*a^3 - I*a*b^2)*weierstrassPInverse(-4, 0 
, cos(d*x + c) - I*sin(d*x + c)) + 3*sqrt(2)*(-5*I*a^2*b - I*b^3)*weierstr 
assZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) 
+ 3*sqrt(2)*(5*I*a^2*b + I*b^3)*weierstrassZeta(-4, 0, weierstrassPInverse 
(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(b^3*cos(d*x + c)^2 + 5*a*b^2* 
cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d
 

Sympy [F]

\[ \int (a+b \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx=\int \left (a + b \cos {\left (c + d x \right )}\right )^{3} \sqrt {\sec {\left (c + d x \right )}}\, dx \] Input:

integrate((a+b*cos(d*x+c))**3*sec(d*x+c)**(1/2),x)
 

Output:

Integral((a + b*cos(c + d*x))**3*sqrt(sec(c + d*x)), x)
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int (a+b \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\sec \left (d x + c\right )} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^3*sec(d*x+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate((b*cos(d*x + c) + a)^3*sqrt(sec(d*x + c)), x)
 

Giac [F]

\[ \int (a+b \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\sec \left (d x + c\right )} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^3*sec(d*x+c)^(1/2),x, algorithm="giac")
 

Output:

integrate((b*cos(d*x + c) + a)^3*sqrt(sec(d*x + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx=\int \sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^3 \,d x \] Input:

int((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^3,x)
 

Output:

int((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^3, x)
 

Reduce [F]

\[ \int (a+b \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx=\left (\int \sqrt {\sec \left (d x +c \right )}d x \right ) a^{3}+3 \left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) a^{2} b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) b^{3}+3 \left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) a \,b^{2} \] Input:

int((a+b*cos(d*x+c))^3*sec(d*x+c)^(1/2),x)
 

Output:

int(sqrt(sec(c + d*x)),x)*a**3 + 3*int(sqrt(sec(c + d*x))*cos(c + d*x),x)* 
a**2*b + int(sqrt(sec(c + d*x))*cos(c + d*x)**3,x)*b**3 + 3*int(sqrt(sec(c 
 + d*x))*cos(c + d*x)**2,x)*a*b**2