\(\int \frac {(a+b \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx\) [710]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 199 \[ \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 a \left (5 a^2+9 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 b \left (21 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {32 a b^2 \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 b \left (21 a^2+5 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 b^2 (b+a \sec (c+d x)) \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)} \] Output:

2/5*a*(5*a^2+9*b^2)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)) 
*sec(d*x+c)^(1/2)/d+2/21*b*(21*a^2+5*b^2)*cos(d*x+c)^(1/2)*InverseJacobiAM 
(1/2*d*x+1/2*c,2^(1/2))*sec(d*x+c)^(1/2)/d+32/35*a*b^2*sin(d*x+c)/d/sec(d* 
x+c)^(3/2)+2/21*b*(21*a^2+5*b^2)*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2/7*b^2*(b+ 
a*sec(d*x+c))*sin(d*x+c)/d/sec(d*x+c)^(5/2)
 

Mathematica [A] (verified)

Time = 1.28 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.66 \[ \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=\frac {\sqrt {\sec (c+d x)} \left (84 a \left (5 a^2+9 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 b \left (21 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+b \left (210 a^2+65 b^2+126 a b \cos (c+d x)+15 b^2 \cos (2 (c+d x))\right ) \sin (2 (c+d x))\right )}{210 d} \] Input:

Integrate[(a + b*Cos[c + d*x])^3/Sqrt[Sec[c + d*x]],x]
 

Output:

(Sqrt[Sec[c + d*x]]*(84*a*(5*a^2 + 9*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c 
+ d*x)/2, 2] + 20*b*(21*a^2 + 5*b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x 
)/2, 2] + b*(210*a^2 + 65*b^2 + 126*a*b*Cos[c + d*x] + 15*b^2*Cos[2*(c + d 
*x)])*Sin[2*(c + d*x)]))/(210*d)
 

Rubi [A] (verified)

Time = 1.23 (sec) , antiderivative size = 194, normalized size of antiderivative = 0.97, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.783, Rules used = {3042, 3717, 3042, 4328, 27, 3042, 4535, 3042, 4256, 3042, 4258, 3042, 3120, 4533, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^3}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {(a \sec (c+d x)+b)^3}{\sec ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+b\right )^3}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 4328

\(\displaystyle \frac {2}{7} \int \frac {16 a b^2+\left (21 a^2+5 b^2\right ) \sec (c+d x) b+a \left (7 a^2+3 b^2\right ) \sec ^2(c+d x)}{2 \sec ^{\frac {5}{2}}(c+d x)}dx+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \int \frac {16 a b^2+\left (21 a^2+5 b^2\right ) \sec (c+d x) b+a \left (7 a^2+3 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x)}dx+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \int \frac {16 a b^2+\left (21 a^2+5 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right ) b+a \left (7 a^2+3 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4535

\(\displaystyle \frac {1}{7} \left (b \left (21 a^2+5 b^2\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)}dx+\int \frac {16 a b^2+a \left (7 a^2+3 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x)}dx\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (b \left (21 a^2+5 b^2\right ) \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\int \frac {16 a b^2+a \left (7 a^2+3 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4256

\(\displaystyle \frac {1}{7} \left (\int \frac {16 a b^2+a \left (7 a^2+3 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+b \left (21 a^2+5 b^2\right ) \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\int \frac {16 a b^2+a \left (7 a^2+3 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+b \left (21 a^2+5 b^2\right ) \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{7} \left (\int \frac {16 a b^2+a \left (7 a^2+3 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+b \left (21 a^2+5 b^2\right ) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\int \frac {16 a b^2+a \left (7 a^2+3 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+b \left (21 a^2+5 b^2\right ) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{7} \left (\int \frac {16 a b^2+a \left (7 a^2+3 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+b \left (21 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4533

\(\displaystyle \frac {1}{7} \left (\frac {7}{5} a \left (5 a^2+9 b^2\right ) \int \frac {1}{\sqrt {\sec (c+d x)}}dx+b \left (21 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )+\frac {32 a b^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {7}{5} a \left (5 a^2+9 b^2\right ) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+b \left (21 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )+\frac {32 a b^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{7} \left (\frac {7}{5} a \left (5 a^2+9 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx+b \left (21 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )+\frac {32 a b^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {7}{5} a \left (5 a^2+9 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+b \left (21 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )+\frac {32 a b^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{7} \left (\frac {14 a \left (5 a^2+9 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+b \left (21 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )+\frac {32 a b^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

Input:

Int[(a + b*Cos[c + d*x])^3/Sqrt[Sec[c + d*x]],x]
 

Output:

(2*b^2*(b + a*Sec[c + d*x])*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + ((14* 
a*(5*a^2 + 9*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c 
+ d*x]])/(5*d) + (32*a*b^2*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + b*(21* 
a^2 + 5*b^2)*((2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + 
 d*x]])/(3*d) + (2*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])))/7
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4328
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[a^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)* 
((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/(d*n)   Int[(a + b*Csc[e + f*x])^(m 
 - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2* 
(n + 1))*Csc[e + f*x] - b*(b^2*n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], 
 x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2] && ((Int 
egerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))
 

rule 4533
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + 
Simp[(C*m + A*(m + 1))/(b^2*m)   Int[(b*Csc[e + f*x])^(m + 2), x], x] /; Fr 
eeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]
 

rule 4535
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]* 
(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[B/b   Int[(b*Cs 
c[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2) 
, x] /; FreeQ[{b, e, f, A, B, C, m}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(420\) vs. \(2(178)=356\).

Time = 21.12 (sec) , antiderivative size = 421, normalized size of antiderivative = 2.12

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (240 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} b^{3}+\left (-504 b^{2} a -360 b^{3}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (420 a^{2} b +504 b^{2} a +280 b^{3}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-210 a^{2} b -126 b^{2} a -80 b^{3}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+105 a^{2} b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+25 b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-105 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{3}-189 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a \,b^{2}\right )}{105 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(421\)
parts \(\text {Expression too large to display}\) \(725\)

Input:

int((a+cos(d*x+c)*b)^3/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*cos(1/ 
2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8*b^3+(-504*a*b^2-360*b^3)*sin(1/2*d*x+1/2 
*c)^6*cos(1/2*d*x+1/2*c)+(420*a^2*b+504*a*b^2+280*b^3)*sin(1/2*d*x+1/2*c)^ 
4*cos(1/2*d*x+1/2*c)+(-210*a^2*b-126*a*b^2-80*b^3)*sin(1/2*d*x+1/2*c)^2*co 
s(1/2*d*x+1/2*c)+105*a^2*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2 
*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+25*b^3*(sin(1/2*d*x+1 
/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2* 
c),2^(1/2))-105*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1 
/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3-189*(sin(1/2*d*x+1/2*c)^2)^( 
1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2) 
)*a*b^2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+ 
1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.09 \[ \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=-\frac {5 \, \sqrt {2} {\left (21 i \, a^{2} b + 5 i \, b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-21 i \, a^{2} b - 5 i \, b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, \sqrt {2} {\left (-5 i \, a^{3} - 9 i \, a b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, \sqrt {2} {\left (5 i \, a^{3} + 9 i \, a b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (15 \, b^{3} \cos \left (d x + c\right )^{3} + 63 \, a b^{2} \cos \left (d x + c\right )^{2} + 5 \, {\left (21 \, a^{2} b + 5 \, b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{105 \, d} \] Input:

integrate((a+b*cos(d*x+c))^3/sec(d*x+c)^(1/2),x, algorithm="fricas")
 

Output:

-1/105*(5*sqrt(2)*(21*I*a^2*b + 5*I*b^3)*weierstrassPInverse(-4, 0, cos(d* 
x + c) + I*sin(d*x + c)) + 5*sqrt(2)*(-21*I*a^2*b - 5*I*b^3)*weierstrassPI 
nverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 21*sqrt(2)*(-5*I*a^3 - 9*I* 
a*b^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I* 
sin(d*x + c))) + 21*sqrt(2)*(5*I*a^3 + 9*I*a*b^2)*weierstrassZeta(-4, 0, w 
eierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(15*b^3*cos( 
d*x + c)^3 + 63*a*b^2*cos(d*x + c)^2 + 5*(21*a^2*b + 5*b^3)*cos(d*x + c))* 
sin(d*x + c)/sqrt(cos(d*x + c)))/d
 

Sympy [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\left (a + b \cos {\left (c + d x \right )}\right )^{3}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx \] Input:

integrate((a+b*cos(d*x+c))**3/sec(d*x+c)**(1/2),x)
 

Output:

Integral((a + b*cos(c + d*x))**3/sqrt(sec(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^3/sec(d*x+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate((b*cos(d*x + c) + a)^3/sqrt(sec(d*x + c)), x)
 

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^3/sec(d*x+c)^(1/2),x, algorithm="giac")
 

Output:

integrate((b*cos(d*x + c) + a)^3/sqrt(sec(d*x + c)), x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^3}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((a + b*cos(c + d*x))^3/(1/cos(c + d*x))^(1/2),x)
 

Output:

int((a + b*cos(c + d*x))^3/(1/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )}d x \right ) a^{3}+3 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )}{\sec \left (d x +c \right )}d x \right ) a^{2} b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}}{\sec \left (d x +c \right )}d x \right ) b^{3}+3 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\sec \left (d x +c \right )}d x \right ) a \,b^{2} \] Input:

int((a+b*cos(d*x+c))^3/sec(d*x+c)^(1/2),x)
 

Output:

int(sqrt(sec(c + d*x))/sec(c + d*x),x)*a**3 + 3*int((sqrt(sec(c + d*x))*co 
s(c + d*x))/sec(c + d*x),x)*a**2*b + int((sqrt(sec(c + d*x))*cos(c + d*x)* 
*3)/sec(c + d*x),x)*b**3 + 3*int((sqrt(sec(c + d*x))*cos(c + d*x)**2)/sec( 
c + d*x),x)*a*b**2