\(\int \frac {1}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx\) [715]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 93 \[ \int \frac {1}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b d}-\frac {2 a \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b (a+b) d} \] Output:

2*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*sec(d*x+c)^(1/2) 
/b/d-2*a*cos(d*x+c)^(1/2)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2)) 
*sec(d*x+c)^(1/2)/b/(a+b)/d
 

Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 47, normalized size of antiderivative = 0.51 \[ \int \frac {1}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {2 \cot (c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {-\tan ^2(c+d x)}}{b d} \] Input:

Integrate[1/((a + b*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x]
 

Output:

(2*Cot[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-T 
an[c + d*x]^2])/(b*d)
 

Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.80, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3042, 3717, 3042, 4335, 3042, 3282, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \cos (c+d x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)}}{a \sec (c+d x)+b}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{a \csc \left (c+d x+\frac {\pi }{2}\right )+b}dx\)

\(\Big \downarrow \) 4335

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\cos (c+d x)}}{a+b \cos (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3282

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}-\frac {a \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}-\frac {a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}\right )\)

\(\Big \downarrow \) 3284

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b d (a+b)}\right )\)

Input:

Int[1/((a + b*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x]
 

Output:

Sqrt[Cos[c + d*x]]*((2*EllipticF[(c + d*x)/2, 2])/(b*d) - (2*a*EllipticPi[ 
(2*b)/(a + b), (c + d*x)/2, 2])/(b*(a + b)*d))*Sqrt[Sec[c + d*x]]
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3282
Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[d/b   Int[1/Sqrt[c + d*Sin[e + f*x]], x], x 
] + Simp[(b*c - a*d)/b   Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x 
]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 
 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4335
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_)), x_Symbol] :> Simp[Sqrt[d*Sin[e + f*x]]*(Sqrt[d*Csc[e + f*x]]/d)   Int[ 
Sqrt[d*Sin[e + f*x]]/(b + a*Sin[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, 
 x] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(187\) vs. \(2(88)=176\).

Time = 4.69 (sec) , antiderivative size = 188, normalized size of antiderivative = 2.02

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a -\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b -a \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )\right )}{\left (a -b \right ) b \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(188\)

Input:

int(1/(a+cos(d*x+c)*b)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/ 
2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*(EllipticF(cos(1/2*d*x+1/2 
*c),2^(1/2))*a-EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b-a*EllipticPi(cos(1/ 
2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))/(a-b)/b/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2 
*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate(1/(a+b*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {1}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int \frac {1}{\left (a + b \cos {\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}}\, dx \] Input:

integrate(1/(a+b*cos(d*x+c))/sec(d*x+c)**(1/2),x)
 

Output:

Integral(1/((a + b*cos(c + d*x))*sqrt(sec(c + d*x))), x)
 

Maxima [F]

\[ \int \frac {1}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate(1/(a+b*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate(1/((b*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)
 

Giac [F]

\[ \int \frac {1}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate(1/(a+b*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="giac")
 

Output:

integrate(1/((b*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \] Input:

int(1/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))),x)
 

Output:

int(1/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))), x)
 

Reduce [F]

\[ \int \frac {1}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int \frac {\sqrt {\sec \left (d x +c \right )}}{\cos \left (d x +c \right ) \sec \left (d x +c \right ) b +\sec \left (d x +c \right ) a}d x \] Input:

int(1/(a+b*cos(d*x+c))/sec(d*x+c)^(1/2),x)
 

Output:

int(sqrt(sec(c + d*x))/(cos(c + d*x)*sec(c + d*x)*b + sec(c + d*x)*a),x)