\(\int \frac {1}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx\) [716]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 135 \[ \int \frac {1}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{b d}-\frac {2 a \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b^2 d}+\frac {2 a^2 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b^2 (a+b) d} \] Output:

2*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^(1/2)/ 
b/d-2*a*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*sec(d*x+c) 
^(1/2)/b^2/d+2*a^2*cos(d*x+c)^(1/2)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b 
),2^(1/2))*sec(d*x+c)^(1/2)/b^2/(a+b)/d
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 19.70 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.30 \[ \int \frac {1}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\cot (c+d x) \left (-b \sec ^{\frac {3}{2}}(c+d x)-b \cos (2 (c+d x)) \sec ^{\frac {3}{2}}(c+d x)+b \sec ^{\frac {7}{2}}(c+d x)+b \cos (2 (c+d x)) \sec ^{\frac {7}{2}}(c+d x)-2 b E\left (\left .\arcsin \left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {-\tan ^2(c+d x)}+2 b \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {-\tan ^2(c+d x)}-2 a \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {-\tan ^2(c+d x)}\right )}{b^2 d} \] Input:

Integrate[1/((a + b*Cos[c + d*x])*Sec[c + d*x]^(3/2)),x]
 

Output:

(Cot[c + d*x]*(-(b*Sec[c + d*x]^(3/2)) - b*Cos[2*(c + d*x)]*Sec[c + d*x]^( 
3/2) + b*Sec[c + d*x]^(7/2) + b*Cos[2*(c + d*x)]*Sec[c + d*x]^(7/2) - 2*b* 
EllipticE[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] + 2*b*Elli 
pticF[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] - 2*a*Elliptic 
Pi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2]))/(b^2*d)
 

Rubi [A] (verified)

Time = 0.98 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.609, Rules used = {3042, 3717, 3042, 4339, 3042, 4274, 3042, 4258, 3042, 3119, 3120, 4336, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {1}{\sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+b\right )}dx\)

\(\Big \downarrow \) 4339

\(\displaystyle \frac {a^2 \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{b+a \sec (c+d x)}dx}{b^2}+\frac {\int \frac {b-a \sec (c+d x)}{\sqrt {\sec (c+d x)}}dx}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}+\frac {\int \frac {b-a \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {a^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}+\frac {b \int \frac {1}{\sqrt {\sec (c+d x)}}dx-a \int \sqrt {\sec (c+d x)}dx}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}+\frac {b \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx-a \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {a^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}+\frac {b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx-a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}+\frac {b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {a^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}+\frac {\frac {2 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {a^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}+\frac {\frac {2 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b^2}\)

\(\Big \downarrow \) 4336

\(\displaystyle \frac {a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b^2}+\frac {\frac {2 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b^2}+\frac {\frac {2 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b^2}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b^2 d (a+b)}+\frac {\frac {2 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b^2}\)

Input:

Int[1/((a + b*Cos[c + d*x])*Sec[c + d*x]^(3/2)),x]
 

Output:

((2*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d - 
 (2*a*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d)/ 
b^2 + (2*a^2*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]* 
Sqrt[Sec[c + d*x]])/(b^2*(a + b)*d)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4336
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[d*Sqrt[d*Sin[e + f*x]]*Sqrt[d*Csc[e + f*x]]   Int[ 
1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4339
Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
 (a_))), x_Symbol] :> Simp[b^2/(a^2*d^2)   Int[(d*Csc[e + f*x])^(3/2)/(a + 
b*Csc[e + f*x]), x], x] + Simp[1/a^2   Int[(a - b*Csc[e + f*x])/Sqrt[d*Csc[ 
e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 
Maple [A] (verified)

Time = 6.51 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.68

method result size
default \(\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b +\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b -\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}-a^{2} \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )\right )}{b^{2} \left (a -b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(227\)

Input:

int(1/(a+cos(d*x+c)*b)/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2 
*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*(EllipticF(cos(1/2*d*x+1/2* 
c),2^(1/2))*a^2-EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+EllipticE(cos(1/ 
2*d*x+1/2*c),2^(1/2))*a*b-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-a^2*El 
lipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))/b^2/(a-b)/(-2*sin(1/2*d*x 
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/ 
2*c)^2-1)^(1/2)/d
                                                                                    
                                                                                    
 

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate(1/(a+b*cos(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {1}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {1}{\left (a + b \cos {\left (c + d x \right )}\right ) \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate(1/(a+b*cos(d*x+c))/sec(d*x+c)**(3/2),x)
 

Output:

Integral(1/((a + b*cos(c + d*x))*sec(c + d*x)**(3/2)), x)
 

Maxima [F]

\[ \int \frac {1}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(a+b*cos(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="maxima")
 

Output:

integrate(1/((b*cos(d*x + c) + a)*sec(d*x + c)^(3/2)), x)
 

Giac [F]

\[ \int \frac {1}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(a+b*cos(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

integrate(1/((b*cos(d*x + c) + a)*sec(d*x + c)^(3/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {1}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \] Input:

int(1/((1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))),x)
 

Output:

int(1/((1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))), x)
 

Reduce [F]

\[ \int \frac {1}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\sqrt {\sec \left (d x +c \right )}}{\cos \left (d x +c \right ) \sec \left (d x +c \right )^{2} b +\sec \left (d x +c \right )^{2} a}d x \] Input:

int(1/(a+b*cos(d*x+c))/sec(d*x+c)^(3/2),x)
 

Output:

int(sqrt(sec(c + d*x))/(cos(c + d*x)*sec(c + d*x)**2*b + sec(c + d*x)**2*a 
),x)