\(\int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [177]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 126 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a^{3/2} (2 A+3 B) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}-\frac {a^2 (2 A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}+\frac {2 a A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \] Output:

a^(3/2)*(2*A+3*B)*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))/d-a^2* 
(2*A-B)*cos(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2*a*A*(a+a*co 
s(d*x+c))^(1/2)*sin(d*x+c)/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.85 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (\sqrt {2} (2 A+3 B) \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\cos (c+d x)}+2 (2 A+B \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{2 d \sqrt {\cos (c+d x)}} \] Input:

Integrate[((a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^( 
3/2),x]
 

Output:

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(Sqrt[2]*(2*A + 3*B)*ArcSin 
[Sqrt[2]*Sin[(c + d*x)/2]]*Sqrt[Cos[c + d*x]] + 2*(2*A + B*Cos[c + d*x])*S 
in[(c + d*x)/2]))/(2*d*Sqrt[Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3042, 3454, 27, 3042, 3460, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3454

\(\displaystyle 2 \int \frac {\sqrt {\cos (c+d x) a+a} (a (2 A+B)-a (2 A-B) \cos (c+d x))}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {\sqrt {\cos (c+d x) a+a} (a (2 A+B)-a (2 A-B) \cos (c+d x))}{\sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (2 A+B)-a (2 A-B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3460

\(\displaystyle \frac {1}{2} a (2 A+3 B) \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx-\frac {a^2 (2 A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} a (2 A+3 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {a^2 (2 A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3253

\(\displaystyle -\frac {a (2 A+3 B) \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {a^2 (2 A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {a^{3/2} (2 A+3 B) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {a^2 (2 A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\)

Input:

Int[((a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x 
]
 

Output:

(a^(3/2)*(2*A + 3*B)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x] 
]])/d - (a^2*(2*A - B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Cos[ 
c + d*x]]) + (2*a*A*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c + 
 d*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 
Maple [A] (verified)

Time = 21.31 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.37

method result size
default \(\frac {\sqrt {a \left (\cos \left (d x +c \right )+1\right )}\, \left (2 A \sin \left (d x +c \right )+\frac {B \sin \left (2 d x +2 c \right )}{2}+2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) A +3 \left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) B \right ) a}{d \sqrt {\cos \left (d x +c \right )}\, \left (\cos \left (d x +c \right )+1\right )}\) \(172\)
parts \(\frac {2 A \sqrt {a \left (\cos \left (d x +c \right )+1\right )}\, \left (\left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )+\sin \left (d x +c \right )\right ) a}{d \sqrt {\cos \left (d x +c \right )}\, \left (\cos \left (d x +c \right )+1\right )}+\frac {B \sqrt {a \left (\cos \left (d x +c \right )+1\right )}\, \left (\frac {\sin \left (2 d x +2 c \right )}{2}+3 \left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )\right ) a}{d \left (\cos \left (d x +c \right )+1\right ) \sqrt {\cos \left (d x +c \right )}}\) \(205\)

Input:

int((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x,method=_RET 
URNVERBOSE)
 

Output:

1/d*(a*(cos(d*x+c)+1))^(1/2)*(2*A*sin(d*x+c)+1/2*B*sin(2*d*x+2*c)+2*(cos(d 
*x+c)+1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/( 
cos(d*x+c)+1))^(1/2))*A+3*(cos(d*x+c)+1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2) 
*arctan(tan(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*B)/cos(d*x+c)^(1/2)/ 
(cos(d*x+c)+1)*a
 

Fricas [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.21 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {{\left (B a \cos \left (d x + c\right ) + 2 \, A a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left ({\left (2 \, A + 3 \, B\right )} a \cos \left (d x + c\right )^{2} + {\left (2 \, A + 3 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )}\right )}{d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algo 
rithm="fricas")
 

Output:

((B*a*cos(d*x + c) + 2*A*a)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*si 
n(d*x + c) + ((2*A + 3*B)*a*cos(d*x + c)^2 + (2*A + 3*B)*a*cos(d*x + c))*s 
qrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*sin(d*x 
+ c)/(a*cos(d*x + c)^2 + a*cos(d*x + c))))/(d*cos(d*x + c)^2 + d*cos(d*x + 
 c))
 

Sympy [F]

\[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \left (A + B \cos {\left (c + d x \right )}\right )}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((a+a*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(3/2),x)
 

Output:

Integral((a*(cos(c + d*x) + 1))**(3/2)*(A + B*cos(c + d*x))/cos(c + d*x)** 
(3/2), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1801 vs. \(2 (112) = 224\).

Time = 0.33 (sec) , antiderivative size = 1801, normalized size of antiderivative = 14.29 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algo 
rithm="maxima")
 

Output:

1/4*((2*(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d* 
x + c) - (a*cos(d*x + c) - a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
+ 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c 
) + 1)^(1/4)*sqrt(a) + 3*(a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c 
)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos 
(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*d*x 
+ 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 
+ 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 
2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2* 
c), cos(2*d*x + 2*c) + 1))) + 1) - a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2* 
d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 
2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(s 
in(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x 
+ 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin 
(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2 
*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 
+ sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2 
*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c 
)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2...
 

Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algo 
rithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^{3/2}} \,d x \] Input:

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^(3/2),x 
)
 

Output:

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^(3/2), 
x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\sqrt {a}\, a \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}d x \right ) b \right ) \] Input:

int((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x)
 

Output:

sqrt(a)*a*(int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x),x) 
*a + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x),x)*b + i 
nt((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x)*a + int( 
sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)),x)*b)