\(\int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [178]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 125 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 a^{3/2} B \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {2 a^2 (4 A+3 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \] Output:

2*a^(3/2)*B*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))/d+2/3*a^2*(4 
*A+3*B)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)+2/3*a*A*(a+a* 
cos(d*x+c))^(1/2)*sin(d*x+c)/d/cos(d*x+c)^(3/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.43 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.85 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (3 \sqrt {2} B \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^{\frac {3}{2}}(c+d x)+2 (A+(5 A+3 B) \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)} \] Input:

Integrate[((a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^( 
5/2),x]
 

Output:

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(3*Sqrt[2]*B*ArcSin[Sqrt[2] 
*Sin[(c + d*x)/2]]*Cos[c + d*x]^(3/2) + 2*(A + (5*A + 3*B)*Cos[c + d*x])*S 
in[(c + d*x)/2]))/(3*d*Cos[c + d*x]^(3/2))
 

Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.02, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3042, 3454, 27, 3042, 3459, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {2}{3} \int \frac {\sqrt {\cos (c+d x) a+a} (a (4 A+3 B)+3 a B \cos (c+d x))}{2 \cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {\sqrt {\cos (c+d x) a+a} (a (4 A+3 B)+3 a B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (4 A+3 B)+3 a B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {1}{3} \left (3 a B \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx+\frac {2 a^2 (4 A+3 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (3 a B \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^2 (4 A+3 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3253

\(\displaystyle \frac {1}{3} \left (\frac {2 a^2 (4 A+3 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {6 a B \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {1}{3} \left (\frac {6 a^{3/2} B \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {2 a^2 (4 A+3 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

Input:

Int[((a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(5/2),x 
]
 

Output:

(2*a*A*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + ( 
(6*a^(3/2)*B*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + 
(2*a^2*(4*A + 3*B)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + 
d*x]]))/3
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 
Maple [A] (verified)

Time = 13.58 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.10

method result size
default \(\frac {2 \left (B \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \left (3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )\right )+\left (\frac {5 \sin \left (2 d x +2 c \right )}{2}+\sin \left (d x +c \right )\right ) A +\frac {3 B \sin \left (2 d x +2 c \right )}{2}\right ) \sqrt {a \left (\cos \left (d x +c \right )+1\right )}\, a}{3 d \cos \left (d x +c \right )^{\frac {3}{2}} \left (\cos \left (d x +c \right )+1\right )}\) \(137\)
parts \(\frac {A \sqrt {a \left (\cos \left (d x +c \right )+1\right )}\, \left (5 \sin \left (2 d x +2 c \right )+2 \sin \left (d x +c \right )\right ) a}{3 d \cos \left (d x +c \right )^{\frac {3}{2}} \left (\cos \left (d x +c \right )+1\right )}+\frac {2 B \sqrt {a \left (\cos \left (d x +c \right )+1\right )}\, \left (\left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )+\sin \left (d x +c \right )\right ) a}{d \sqrt {\cos \left (d x +c \right )}\, \left (\cos \left (d x +c \right )+1\right )}\) \(158\)

Input:

int((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x,method=_RET 
URNVERBOSE)
 

Output:

2/3/d*(B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/( 
cos(d*x+c)+1))^(1/2))*(3*cos(d*x+c)^2+3*cos(d*x+c))+(5/2*sin(2*d*x+2*c)+si 
n(d*x+c))*A+3/2*B*sin(2*d*x+2*c))*(a*(cos(d*x+c)+1))^(1/2)/cos(d*x+c)^(3/2 
)/(cos(d*x+c)+1)*a
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.22 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \, {\left ({\left ({\left (5 \, A + 3 \, B\right )} a \cos \left (d x + c\right ) + A a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left (B a \cos \left (d x + c\right )^{3} + B a \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )}\right )\right )}}{3 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x, algo 
rithm="fricas")
 

Output:

2/3*(((5*A + 3*B)*a*cos(d*x + c) + A*a)*sqrt(a*cos(d*x + c) + a)*sqrt(cos( 
d*x + c))*sin(d*x + c) + 3*(B*a*cos(d*x + c)^3 + B*a*cos(d*x + c)^2)*sqrt( 
a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*sin(d*x + c) 
/(a*cos(d*x + c)^2 + a*cos(d*x + c))))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^ 
2)
 

Sympy [F]

\[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \left (A + B \cos {\left (c + d x \right )}\right )}{\cos ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((a+a*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(5/2),x)
 

Output:

Integral((a*(cos(c + d*x) + 1))**(3/2)*(A + B*cos(c + d*x))/cos(c + d*x)** 
(5/2), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1124 vs. \(2 (107) = 214\).

Time = 0.25 (sec) , antiderivative size = 1124, normalized size of antiderivative = 8.99 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x, algo 
rithm="maxima")
 

Output:

1/6*(3*((a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x 
+ 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*si 
n(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(s 
in(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), 
cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d* 
x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 
1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2 
(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c) 
, cos(2*d*x + 2*c)))) + 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2 
*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), c 
os(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) 
 - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan 
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 
 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), 
 cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) 
)) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arct 
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - a*arctan2((cos(2*d*x + 2* 
c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2( 
sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x 
+ 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*...
 

Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x, algo 
rithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^{5/2}} \,d x \] Input:

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^(5/2),x 
)
 

Output:

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^(5/2), 
x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\sqrt {a}\, a \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) b \right ) \] Input:

int((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x)
 

Output:

sqrt(a)*a*(int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x),x) 
*b + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**3,x)*a 
+ int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x)*a + i 
nt((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x)*b)