\(\int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx\) [373]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 198 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\frac {(A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b \left (a^2-b^2\right ) d}+\frac {\left (a A b+a^2 B-2 b^2 B\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^2 \left (a^2-b^2\right ) d}-\frac {\left (a^2 A b+A b^3+a^3 B-3 a b^2 B\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{(a-b) b^2 (a+b)^2 d}-\frac {(A b-a B) \sqrt {\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))} \] Output:

(A*b-B*a)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b/(a^2-b^2)/d+(A*a*b+B*a^2 
-2*B*b^2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/b^2/(a^2-b^2)/d-(A*a^2*b+ 
A*b^3+B*a^3-3*B*a*b^2)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/(a 
-b)/b^2/(a+b)^2/d-(A*b-B*a)*cos(d*x+c)^(1/2)*sin(d*x+c)/(a^2-b^2)/d/(a+b*c 
os(d*x+c))
 

Mathematica [A] (warning: unable to verify)

Time = 2.92 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.31 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\frac {\frac {4 (-A b+a B) \sqrt {\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\frac {2 (-A b+a B) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+\frac {(4 a A-4 b B) \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )}{b}+\frac {2 (A b-a B) \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a b^2 \sqrt {\sin ^2(c+d x)}}}{(-a+b) (a+b)}}{4 d} \] Input:

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^2 
,x]
 

Output:

((4*(-(A*b) + a*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*(a + b*Co 
s[c + d*x])) - ((2*(-(A*b) + a*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2 
])/(a + b) + ((4*a*A - 4*b*B)*(2*EllipticF[(c + d*x)/2, 2] - (2*a*Elliptic 
Pi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)))/b + (2*(A*b - a*B)*(-2*a*b*El 
lipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqr 
t[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[ 
c + d*x]]], -1])*Sin[c + d*x])/(a*b^2*Sqrt[Sin[c + d*x]^2]))/((-a + b)*(a 
+ b)))/(4*d)
 

Rubi [A] (verified)

Time = 1.22 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.97, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3042, 3478, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3478

\(\displaystyle -\frac {\int \frac {-\left ((A b-a B) \cos ^2(c+d x)\right )-2 (a A-b B) \cos (c+d x)+A b-a B}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a^2-b^2}-\frac {(A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {-\left ((A b-a B) \cos ^2(c+d x)\right )-2 (a A-b B) \cos (c+d x)+A b-a B}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{2 \left (a^2-b^2\right )}-\frac {(A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {(a B-A b) \sin \left (c+d x+\frac {\pi }{2}\right )^2-2 (a A-b B) \sin \left (c+d x+\frac {\pi }{2}\right )+A b-a B}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 \left (a^2-b^2\right )}-\frac {(A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3538

\(\displaystyle -\frac {-\frac {\int -\frac {b (A b-a B)-\left (B a^2+A b a-2 b^2 B\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}-\frac {(A b-a B) \int \sqrt {\cos (c+d x)}dx}{b}}{2 \left (a^2-b^2\right )}-\frac {(A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {\int \frac {b (A b-a B)-\left (B a^2+A b a-2 b^2 B\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}-\frac {(A b-a B) \int \sqrt {\cos (c+d x)}dx}{b}}{2 \left (a^2-b^2\right )}-\frac {(A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {b (A b-a B)+\left (-B a^2-A b a+2 b^2 B\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}-\frac {(A b-a B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{2 \left (a^2-b^2\right )}-\frac {(A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {\frac {\int \frac {b (A b-a B)+\left (-B a^2-A b a+2 b^2 B\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}-\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 \left (a^2-b^2\right )}-\frac {(A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3481

\(\displaystyle -\frac {\frac {\frac {\left (a^3 B+a^2 A b-3 a b^2 B+A b^3\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}-\frac {\left (a^2 B+a A b-2 b^2 B\right ) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}}{b}-\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 \left (a^2-b^2\right )}-\frac {(A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {\left (a^3 B+a^2 A b-3 a b^2 B+A b^3\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}-\frac {\left (a^2 B+a A b-2 b^2 B\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}}{b}-\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 \left (a^2-b^2\right )}-\frac {(A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {\frac {\frac {\left (a^3 B+a^2 A b-3 a b^2 B+A b^3\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}-\frac {2 \left (a^2 B+a A b-2 b^2 B\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}}{b}-\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 \left (a^2-b^2\right )}-\frac {(A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3284

\(\displaystyle -\frac {(A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\frac {\frac {2 \left (a^3 B+a^2 A b-3 a b^2 B+A b^3\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b d (a+b)}-\frac {2 \left (a^2 B+a A b-2 b^2 B\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}}{b}-\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 \left (a^2-b^2\right )}\)

Input:

Int[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^2,x]
 

Output:

-1/2*((-2*(A*b - a*B)*EllipticE[(c + d*x)/2, 2])/(b*d) + ((-2*(a*A*b + a^2 
*B - 2*b^2*B)*EllipticF[(c + d*x)/2, 2])/(b*d) + (2*(a^2*A*b + A*b^3 + a^3 
*B - 3*a*b^2*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b*(a + b)*d))/ 
b)/(a^2 - b^2) - ((A*b - a*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((a^2 - b^2 
)*d*(a + b*Cos[c + d*x]))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3478
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(B*a - A*b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f* 
x])^n/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(a^2 - b^2))   Int[(a 
+ b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[c*(a*A - b*B)*( 
m + 1) + d*n*(A*b - a*B) + (d*(a*A - b*B)*(m + 1) - c*(A*b - a*B)*(m + 2))* 
Sin[e + f*x] - d*(A*b - a*B)*(m + n + 2)*Sin[e + f*x]^2, x], x], x] /; Free 
Q[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
 NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(807\) vs. \(2(201)=402\).

Time = 6.28 (sec) , antiderivative size = 808, normalized size of antiderivative = 4.08

method result size
default \(\text {Expression too large to display}\) \(808\)

Input:

int(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+cos(d*x+c)*b)^2,x,method=_RETURNV 
ERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*B/b^2*(sin(1 
/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1 
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))- 
4/b*(A*b-2*B*a)/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d* 
x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*E 
llipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))-2*a*(A*b-B*a)/b^2*(-b^2/a 
/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^ 
2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-1/2/a/(a+b)*(sin(1/2*d*x+1/2*c)^2) 
^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2* 
d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2*b/(a^2-b^2)/ 
a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1 
/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2 
^(1/2))+1/2*b/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2 
*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipt 
icE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d* 
x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c) 
^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^ 
(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*c 
os(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2 
)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))))/sin(1/2*d*x...
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x, algorith 
m="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x, algorith 
m="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(b*cos(d*x + c) + a)^2, 
x)
 

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x, algorith 
m="giac")
 

Output:

integrate((B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(b*cos(d*x + c) + a)^2, 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x)))/(a + b*cos(c + d*x))^2,x)
 

Output:

int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x)))/(a + b*cos(c + d*x))^2, x)
 

Reduce [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right ) b +a}d x \] Input:

int(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)*b + a),x)