\(\int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx\) [374]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 200 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=-\frac {(A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a \left (a^2-b^2\right ) d}-\frac {(A b-a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b \left (a^2-b^2\right ) d}+\frac {\left (3 a^2 A b-A b^3-a^3 B-a b^2 B\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a (a-b) b (a+b)^2 d}+\frac {b (A b-a B) \sqrt {\cos (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))} \] Output:

-(A*b-B*a)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/(a^2-b^2)/d-(A*b-B*a)*I 
nverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/b/(a^2-b^2)/d+(3*A*a^2*b-A*b^3-B*a^3 
-B*a*b^2)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/a/(a-b)/b/(a+b) 
^2/d+b*(A*b-B*a)*cos(d*x+c)^(1/2)*sin(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c) 
)
 

Mathematica [A] (warning: unable to verify)

Time = 3.14 (sec) , antiderivative size = 274, normalized size of antiderivative = 1.37 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=\frac {\frac {4 b (A b-a B) \sqrt {\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {\frac {2 \left (4 a^2 A-3 A b^2-a b B\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+\frac {4 a (-A b+a B) \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )}{b}+\frac {2 (-A b+a B) \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a b \sqrt {\sin ^2(c+d x)}}}{(a-b) (a+b)}}{4 a d} \] Input:

Integrate[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^2) 
,x]
 

Output:

((4*b*(A*b - a*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*(a + b*Cos 
[c + d*x])) + ((2*(4*a^2*A - 3*A*b^2 - a*b*B)*EllipticPi[(2*b)/(a + b), (c 
 + d*x)/2, 2])/(a + b) + (4*a*(-(A*b) + a*B)*(2*EllipticF[(c + d*x)/2, 2] 
- (2*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)))/b + (2*(-(A*b) 
 + a*B)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*El 
lipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a) 
, ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b*Sqrt[Sin[c + d*x]^2] 
))/((a - b)*(a + b)))/(4*a*d)
 

Rubi [A] (verified)

Time = 1.36 (sec) , antiderivative size = 185, normalized size of antiderivative = 0.92, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3042, 3479, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3479

\(\displaystyle \frac {\int \frac {2 A a^2-b B a-2 (A b-a B) \cos (c+d x) a-A b^2-b (A b-a B) \cos ^2(c+d x)}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {2 A a^2-b B a-2 (A b-a B) \cos (c+d x) a-A b^2-b (A b-a B) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {2 A a^2-b B a-2 (A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right ) a-A b^2-b (A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {-\frac {\int -\frac {b \left (2 A a^2-b B a-A b^2\right )-a b (A b-a B) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}-\left ((A b-a B) \int \sqrt {\cos (c+d x)}dx\right )}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {b \left (2 A a^2-b B a-A b^2\right )-a b (A b-a B) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}-(A b-a B) \int \sqrt {\cos (c+d x)}dx}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {b \left (2 A a^2-b B a-A b^2\right )-a b (A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}-(A b-a B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {\int \frac {b \left (2 A a^2-b B a-A b^2\right )-a b (A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}-\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {\frac {\left (a^3 (-B)+3 a^2 A b-a b^2 B-A b^3\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx-a (A b-a B) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}-\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (a^3 (-B)+3 a^2 A b-a b^2 B-A b^3\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx-a (A b-a B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\left (a^3 (-B)+3 a^2 A b-a b^2 B-A b^3\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx-\frac {2 a (A b-a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}-\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {b (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {\frac {\frac {2 \left (a^3 (-B)+3 a^2 A b-a b^2 B-A b^3\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{d (a+b)}-\frac {2 a (A b-a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}-\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a \left (a^2-b^2\right )}\)

Input:

Int[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^2),x]
 

Output:

((-2*(A*b - a*B)*EllipticE[(c + d*x)/2, 2])/d + ((-2*a*(A*b - a*B)*Ellipti 
cF[(c + d*x)/2, 2])/d + (2*(3*a^2*A*b - A*b^3 - a^3*B - a*b^2*B)*EllipticP 
i[(2*b)/(a + b), (c + d*x)/2, 2])/((a + b)*d))/b)/(2*a*(a^2 - b^2)) + (b*( 
A*b - a*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(a*(a^2 - b^2)*d*(a + b*Cos[c 
+ d*x]))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3479
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin 
[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 
1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e 
 + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m + n + 
2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B) 
*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n 
}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Rat 
ionalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(I 
ntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0]) 
))
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(720\) vs. \(2(203)=406\).

Time = 5.89 (sec) , antiderivative size = 721, normalized size of antiderivative = 3.60

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\frac {4 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{\left (-2 a b +2 b^{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {2 \left (A b -B a \right ) \left (-\frac {b^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{a \left (a^{2}-b^{2}\right ) \left (2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b \right )}-\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{2 a \left (a +b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{2 \left (a^{2}-b^{2}\right ) a \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{2 \left (a^{2}-b^{2}\right ) a \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {3 a b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{\left (a^{2}-b^{2}\right ) \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{a \left (a^{2}-b^{2}\right ) \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{b}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(721\)

Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+cos(d*x+c)*b)^2,x,method=_RETURNV 
ERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*B/(-2*a*b+2 
*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*s 
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2 
*c),-2*b/(a-b),2^(1/2))+2*(A*b-B*a)/b*(-b^2/a/(a^2-b^2)*cos(1/2*d*x+1/2*c) 
*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2 
*c)^2+a-b)-1/2/a/(a+b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c) 
^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF 
(cos(1/2*d*x+1/2*c),2^(1/2))-1/2*b/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2 
)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1 
/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*b/(a^2-b^2)/a*(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d* 
x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2 
))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2 
*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2 
)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+ 
2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/ 
(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d* 
x+1/2*c),-2*b/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2- 
1)^(1/2)/d
 

Fricas [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorith 
m="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorith 
m="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^2*sqrt(cos(d*x + c))) 
, x)
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorith 
m="giac")
 

Output:

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^2*sqrt(cos(d*x + c))) 
, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))^2),x)
 

Output:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))^2), x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2} b +\cos \left (d x +c \right ) a}d x \] Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)**2*b + cos(c + d*x)*a),x)