\(\int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx\) [375]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F(-1)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 256 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=-\frac {\left (2 a^2 A-3 A b^2+a b B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 \left (a^2-b^2\right ) d}+\frac {(A b-a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a \left (a^2-b^2\right ) d}-\frac {\left (5 a^2 A b-3 A b^3-3 a^3 B+a b^2 B\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 (a-b) (a+b)^2 d}+\frac {\left (2 a^2 A-3 A b^2+a b B\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)}}+\frac {b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \] Output:

-(2*A*a^2-3*A*b^2+B*a*b)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/(a^2-b^ 
2)/d+(A*b-B*a)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/a/(a^2-b^2)/d-(5*A*a 
^2*b-3*A*b^3-3*B*a^3+B*a*b^2)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1 
/2))/a^2/(a-b)/(a+b)^2/d+(2*A*a^2-3*A*b^2+B*a*b)*sin(d*x+c)/a^2/(a^2-b^2)/ 
d/cos(d*x+c)^(1/2)+b*(A*b-B*a)*sin(d*x+c)/a/(a^2-b^2)/d/cos(d*x+c)^(1/2)/( 
a+b*cos(d*x+c))
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 5.19 (sec) , antiderivative size = 316, normalized size of antiderivative = 1.23 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\frac {-\frac {\frac {2 \left (-10 a^2 A b+9 A b^3+4 a^3 B-3 a b^2 B\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}-\frac {8 a \left (a^2 A-2 A b^2+a b B\right ) \left ((a+b) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )\right )}{b (a+b)}-\frac {2 \left (2 a^2 A-3 A b^2+a b B\right ) \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a b \sqrt {\sin ^2(c+d x)}}}{(-a+b) (a+b)}+4 \sqrt {\cos (c+d x)} \left (\frac {b^2 (A b-a B) \sin (c+d x)}{\left (-a^2+b^2\right ) (a+b \cos (c+d x))}+2 A \tan (c+d x)\right )}{4 a^2 d} \] Input:

Integrate[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^2) 
,x]
 

Output:

(-(((2*(-10*a^2*A*b + 9*A*b^3 + 4*a^3*B - 3*a*b^2*B)*EllipticPi[(2*b)/(a + 
 b), (c + d*x)/2, 2])/(a + b) - (8*a*(a^2*A - 2*A*b^2 + a*b*B)*((a + b)*El 
lipticF[(c + d*x)/2, 2] - a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]))/(b 
*(a + b)) - (2*(2*a^2*A - 3*A*b^2 + a*b*B)*(-2*a*b*EllipticE[ArcSin[Sqrt[C 
os[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] 
 + (-2*a^2 + b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[ 
c + d*x])/(a*b*Sqrt[Sin[c + d*x]^2]))/((-a + b)*(a + b))) + 4*Sqrt[Cos[c + 
 d*x]]*((b^2*(A*b - a*B)*Sin[c + d*x])/((-a^2 + b^2)*(a + b*Cos[c + d*x])) 
 + 2*A*Tan[c + d*x]))/(4*a^2*d)
 

Rubi [A] (verified)

Time = 1.91 (sec) , antiderivative size = 242, normalized size of antiderivative = 0.95, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {3042, 3479, 27, 3042, 3534, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3479

\(\displaystyle \frac {\int \frac {2 A a^2+b B a-2 (A b-a B) \cos (c+d x) a-3 A b^2+b (A b-a B) \cos ^2(c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}dx}{a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {2 A a^2+b B a-2 (A b-a B) \cos (c+d x) a-3 A b^2+b (A b-a B) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}dx}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {2 A a^2+b B a-2 (A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right ) a-3 A b^2+b (A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {\frac {2 \int -\frac {-2 B a^3+4 A b a^2+b^2 B a+2 \left (A a^2+b B a-2 A b^2\right ) \cos (c+d x) a-3 A b^3+b \left (2 A a^2+b B a-3 A b^2\right ) \cos ^2(c+d x)}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}+\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {-2 B a^3+4 A b a^2+b^2 B a+2 \left (A a^2+b B a-2 A b^2\right ) \cos (c+d x) a-3 A b^3+b \left (2 A a^2+b B a-3 A b^2\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {-2 B a^3+4 A b a^2+b^2 B a+2 \left (A a^2+b B a-2 A b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a-3 A b^3+b \left (2 A a^2+b B a-3 A b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\left (2 a^2 A+a b B-3 A b^2\right ) \int \sqrt {\cos (c+d x)}dx-\frac {\int -\frac {b \left (-2 B a^3+4 A b a^2+b^2 B a-3 A b^3\right )-a b^2 (A b-a B) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{a}}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\left (2 a^2 A+a b B-3 A b^2\right ) \int \sqrt {\cos (c+d x)}dx+\frac {\int \frac {b \left (-2 B a^3+4 A b a^2+b^2 B a-3 A b^3\right )-a b^2 (A b-a B) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{a}}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\left (2 a^2 A+a b B-3 A b^2\right ) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {\int \frac {b \left (-2 B a^3+4 A b a^2+b^2 B a-3 A b^3\right )-a b^2 (A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}}{a}}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {b \left (-2 B a^3+4 A b a^2+b^2 B a-3 A b^3\right )-a b^2 (A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {b \left (-3 a^3 B+5 a^2 A b+a b^2 B-3 A b^3\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx-a b (A b-a B) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}+\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {b \left (-3 a^3 B+5 a^2 A b+a b^2 B-3 A b^3\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx-a b (A b-a B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {b \left (-3 a^3 B+5 a^2 A b+a b^2 B-3 A b^3\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx-\frac {2 a b (A b-a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}+\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{2 a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}+\frac {\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {2 \left (2 a^2 A+a b B-3 A b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {\frac {2 b \left (-3 a^3 B+5 a^2 A b+a b^2 B-3 A b^3\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{d (a+b)}-\frac {2 a b (A b-a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}}{a}}{2 a \left (a^2-b^2\right )}\)

Input:

Int[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^2),x]
 

Output:

(b*(A*b - a*B)*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*(a + b*Co 
s[c + d*x])) + (-(((2*(2*a^2*A - 3*A*b^2 + a*b*B)*EllipticE[(c + d*x)/2, 2 
])/d + ((-2*a*b*(A*b - a*B)*EllipticF[(c + d*x)/2, 2])/d + (2*b*(5*a^2*A*b 
 - 3*A*b^3 - 3*a^3*B + a*b^2*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]) 
/((a + b)*d))/b)/a) + (2*(2*a^2*A - 3*A*b^2 + a*b*B)*Sin[c + d*x])/(a*d*Sq 
rt[Cos[c + d*x]]))/(2*a*(a^2 - b^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3479
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin 
[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 
1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e 
 + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m + n + 
2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B) 
*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n 
}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Rat 
ionalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(I 
ntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0]) 
))
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(855\) vs. \(2(257)=514\).

Time = 6.50 (sec) , antiderivative size = 856, normalized size of antiderivative = 3.34

method result size
default \(\text {Expression too large to display}\) \(856\)

Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*b)^2,x,method=_RETURNV 
ERBOSE)
                                                                                    
                                                                                    
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A/a^2/sin(1/ 
2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d 
*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+ 
1/2*c),2^(1/2)))-2*(A*b-B*a)/a*(-b^2/a/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*si 
n(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a 
-b)-1/2/a/(a+b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^( 
1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/ 
2*d*x+1/2*c),2^(1/2))-1/2*b/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*c 
os(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2 
)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*b/(a^2-b^2)/a*(sin(1/2*d 
*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c 
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/ 
(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/ 
2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellip 
ticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)* 
b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin 
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c 
),-2*b/(a-b),2^(1/2)))+4*A*b^2/a^2/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^( 
1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2...
 

Fricas [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^2,x, algorith 
m="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(3/2)/(a+b*cos(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^2,x, algorith 
m="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^2,x, algorith 
m="giac")
 

Output:

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^2*cos(d*x + c)^(3/2)) 
, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^2),x)
 

Output:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^2), x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3} b +\cos \left (d x +c \right )^{2} a}d x \] Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^2,x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)**3*b + cos(c + d*x)**2*a),x)