\(\int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx\) [423]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 230 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 A (a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a^2 d}-\frac {2 \sqrt {a+b} (A-B) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d} \] Output:

2*A*(a-b)*(a+b)^(1/2)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1 
/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)* 
(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d-2*(a+b)^(1/2)*(A-B)*cot(d*x+c)*Ellipt 
icF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/ 
2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 15.72 (sec) , antiderivative size = 299, normalized size of antiderivative = 1.30 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 \left (A (a+b \cos (c+d x)) \sin (c+d x)-\frac {2 \sqrt {2} \cos ^2\left (\frac {1}{2} (c+d x)\right )^{3/2} \left (2 A (a+b) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )-2 a (A+B) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+A \cos (c+d x) (a+b \cos (c+d x)) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{(1+\cos (c+d x))^{3/2}}\right )}{a d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \] Input:

Integrate[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*Sqrt[a + b*Cos[c + d*x] 
]),x]
 

Output:

(2*(A*(a + b*Cos[c + d*x])*Sin[c + d*x] - (2*Sqrt[2]*(Cos[(c + d*x)/2]^2)^ 
(3/2)*(2*A*(a + b)*Cos[(c + d*x)/2]^2*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x]) 
]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin 
[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - 2*a*(A + B)*Cos[(c + d*x)/2]^2*Sqr 
t[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + 
 Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + A 
*Cos[c + d*x]*(a + b*Cos[c + d*x])*Tan[(c + d*x)/2]))/(1 + Cos[c + d*x])^( 
3/2)))/(a*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3477

\(\displaystyle A \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-(A-B) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle A \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(A-B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3295

\(\displaystyle A \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} (A-B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {2 A (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 \sqrt {a+b} (A-B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}\)

Input:

Int[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*Sqrt[a + b*Cos[c + d*x]]),x]
 

Output:

(2*A*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + 
d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - 
Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a^2*d) - (2 
*Sqrt[a + b]*(A - B)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x] 
]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[ 
c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(479\) vs. \(2(208)=416\).

Time = 23.94 (sec) , antiderivative size = 480, normalized size of antiderivative = 2.09

method result size
default \(\frac {2 \left (\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) A \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) A \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, b \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) A \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) B \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+A b \cos \left (d x +c \right ) \sin \left (d x +c \right )+A a \sin \left (d x +c \right )\right ) \sqrt {a +\cos \left (d x +c \right ) b}}{d \sqrt {\cos \left (d x +c \right )}\, \left (b \cos \left (d x +c \right )^{2}+a \cos \left (d x +c \right )+\cos \left (d x +c \right ) b +a \right ) a}\) \(480\)
parts \(-\frac {2 B \left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}}{d \sqrt {\cos \left (d x +c \right )}\, \sqrt {a +\cos \left (d x +c \right ) b}}+\frac {2 A \left (\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, b \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+b \cos \left (d x +c \right ) \sin \left (d x +c \right )+a \sin \left (d x +c \right )\right ) \sqrt {a +\cos \left (d x +c \right ) b}}{d \sqrt {\cos \left (d x +c \right )}\, \left (b \cos \left (d x +c \right )^{2}+a \cos \left (d x +c \right )+\cos \left (d x +c \right ) b +a \right ) a}\) \(488\)

Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*b)^(1/2),x,method=_RET 
URNVERBOSE)
 

Output:

2/d*((cos(d*x+c)^2+2*cos(d*x+c)+1)*A*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b 
))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*EllipticE(cot(d*x+c)-csc(d*x+ 
c),(-(a-b)/(a+b))^(1/2))+(cos(d*x+c)^2+2*cos(d*x+c)+1)*A*((a+cos(d*x+c)*b) 
/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b*EllipticE 
(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(-cos(d*x+c)^2-2*cos(d*x+c)-1 
)*A*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+ 
1))^(1/2)*a*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(-cos(d* 
x+c)^2-2*cos(d*x+c)-1)*B*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(co 
s(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/( 
a+b))^(1/2))+A*b*cos(d*x+c)*sin(d*x+c)+A*a*sin(d*x+c))*(a+cos(d*x+c)*b)^(1 
/2)/cos(d*x+c)^(1/2)/(b*cos(d*x+c)^2+a*cos(d*x+c)+cos(d*x+c)*b+a)/a
 

Fricas [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algo 
rithm="fricas")
 

Output:

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/ 
(b*cos(d*x + c)^3 + a*cos(d*x + c)^2), x)
 

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {A + B \cos {\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}} \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(3/2)/(a+b*cos(d*x+c))**(1/2),x)
 

Output:

Integral((A + B*cos(c + d*x))/(sqrt(a + b*cos(c + d*x))*cos(c + d*x)**(3/2 
)), x)
 

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)/(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(3/2 
)), x)
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algo 
rithm="giac")
 

Output:

integrate((B*cos(d*x + c) + A)/(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(3/2 
)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^(1/2)),x 
)
 

Output:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^(1/2)), 
x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \] Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x)